UNDER SUBMISSION TO IEEE TRANSACTIONS ON POWER DELIVERY

Statistical Machine Learning and
Dissolved Gas Analysis: A Review (Appendix)

Piotr Mirowski, Member, IEEE, and Yann LeCun

This is the online appendix to our paper submitted to /EEE
Transactions on Power Delivery, entitled “Statistical Machine
Learning and Dissolved Gas Analysis: A Review”. It presents
the 15 algorithms used in our study, with more technical details
than in the paper. Matlab code for all the machine learning
libraries, as well as the public Duval dataset, are available at
http://cs.nyu.edu/~mirowski/pub/dga.

I. METHODS FOR CLASSIFYING DGA MEASUREMENTS

This section focuses on our statistical machine learning
methodology for transformer failure prediction. We begin by
formulating the problem from two possible viewpoints: classi-
fication or regression (Section I-A). Then we recapitulate the
most important concepts of predictive learning in Section I-B
before giving high-level overviews of selected classification
and regression algorithms', in Sections I-C and I-D respec-
tively, along with rationale for their application to DGA. We
also evoke two semi-supervised algorithms that can exploit
unlabeled DGA data points in Section I-E.

A. A Classification or Regression Problem

1) Formulation as a Binary Classification Problem: Al-
though DGA can diagnose multiple reasons for transformer
failures [1]-[3] (e.g. high-energy arcing, hot spots above
400°C, or corona discharges), the primordial task can be
expressed as binary classification: “is the transformer at risk
of failure?” From a dataset of DGA measures collected on the
pool of transformers, one can identify DGA readings recorded
shortly before failures, and separate them from historical
DGA readings from transformers that kept on operating for
an extended period of time. We use the convention that
measurement ¢ is labeled y; = 0 in the “faulty” case and
y; = 1 in the “normal” case. In the experiments described
in the paper, we arbitrarily labeled DGA measurement x; as
“normal” if it was taken at least 5 years prior to a failure, and
“faulty” otherwise.

2) Classifying Measurements Instead of Transformers: As
a transformer ages, its risk of failure should increase and the
DGA measurements are expected to evolve. Our predictive
task therefore shifts from “transformer classification” to “DGA
measurement classification”, and we associate to each mea-
surement x; taken at time ¢, a label y; that characterizes the
short-term or middle-term risk of failure relative to time t¢.
In the experiments described in the paper, some transformers
had more than a single DGA measurement taken across their
lifetime (e.g. X;j,Xjt1,--.), but we considered the datapoints

(xi,¥i) 5 (Xit1,Yi+1) ,- - - separately.
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3) Formulation as a Regression Problem: The second
dataset investigated in the paper also contained the time-
stamps of DGA measurements, along with information about
the time of failure. We used this information to obtain more
informative labels y; € [0,1], where y; = 0 would mean
“bound to fail”, y; = 1 would mean “should not fail in the
foreseeable future”, and values y; between those two extremes
would quantify the risk of failure. A predictor trained on
such dataset could have a real-valued output that would help
prioritize the intervention by the utility company?.

4) Labeled Data for the Regression Problem: The exact
method that we used to obtain the labels for the regression
task is the following. First, we gathered for each DGA
measurement, both the date at which the DGA measurement
was taken, and the date at which the corresponding transformer
failed, and computed the difference in time, expressed in years.
Transformers that had their DGA samples done at the time
of or after the failure were given a value of zero, while
transformers that did not fail were associated an arbitrary
high value. These values corresponded to the Time-To-Failure
(TTF) in years. Then, we considered only the DGA samples
from transformers that (ultimately) failed, and sorted the TTF
in order to compute their empirical Cumulated Distribution
Function (CDF). TTFs of zero would correspond to a CDF of
zero, while very long TTFs would asymptotically converge to
a CDF of one. The CDF can be simply implemented using
a sorting algorithm; on a finite set of TTF values, the CDF
value itself corresponds to the rank of the sorted value, divided
by the number of elements. Our proposed approach to obtain
labels for the regression task of the Time-to-failure (TTF) is
to employ the values of the CDF as the labels. Under that
scheme, all “normal” DGA samples from transformers that
did not fail (yet) are simply labeled 1.

B. Generalities

Before delving into more detailed descriptions of learning
algorithms, let us explicit their commonalities.

1) Supervised Learning of the Predictor: Supervised learn-
ing consists in fitting a predictive model to a training dataset
(X,y) (which consists here in pairs {(xi,y;)} of DGA
measurements x; and associated risk-of-failure labels ;). The
objective is merely to optimize a function f such that for
each data point x;, the prediction §; = f(x;) is as close
as possible to the ground truth rarget y;. In classification
tasks, the discrepancy E between all ; and y; is generally
quantified as a sum of errors ) . 15,4, or as joint probability
Py =ylf) = IL, P (% = yi|f). In regression tasks, E is
most often defined as the total square error Y, || 4; — y; |3

2) Training, Validation and Test Sets: Good statistical ma-
chine learning algorithms are capable of extrapolating knowl-
edge and of generalizing it on unseen data points. For this

*Note that many classification algorithms, although trained on binary
classes, can provide with probabilities.
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reason, we separate the known data points into a training (in-
sample) set, used to define model f, and a test (out-of-sample)
set, used exclusively to quantify the predictive power of f.

3) Selection of Hyper-parameters by Cross-validation:
Most models, including the non-parametric ones, need the
specification of a few hyperparameters (e.g. the number of
nearest neighbors, or the number of hidden units in a neural
network); to this effect, a subset of the training data (called
the validation set) can be set apart during learning, in order
to evaluate the quality of fit of the model for various values
of the hyperparameters. In our research, we resorted to cross-
validation, i.e. multiple (here 5-fold) validation on five non-
overlapping sets. More specifically, for each choice of hyper-
parameters, we performed five cross-validations on five sets
that contained each 20% of the available training data, while
the remaining 80% would be used to fit the model.

C. Classification techniques

Before dwelling into descriptions of 15 classification and
regression algorithms employed in this study, and for ease of
explanation, we illustrate on Fig. 1 how a few classification
and regression techniques behave on two-dimensional data.
We trained six different classifiers or regressors on a two-
dimensional, two-gas training set Dy, of real DGA data (that
we extracted from the seven-gas Duval public dataset, and
we plot on Fig. 1 failure prediction results of each algorithm
on the entire two-gas DGA subspace (in grayscale values
ranging from white for “normal” transformers, § = 1, to black
for “faulty” transformers, § = 0). Some algorithms have a
linear decision boundary at 4 = 0.5, while other ones are
non-linear, some smoother than others. For each of the six
algorithms, we also report the accuracy on the training set
Dy,.. Not all algorithms fit the training data Dy, perfectly;
as can be seen on these plots, some algorithms obtain very
high accuracy on the training set (e.g. 100% for k-Nearest
Neighbors), whereas their behavior on the entire two-gas DGA
space is incorrect; for instance, very low concentrations of both
DGA gases, here standardized log;;(CHs) and log;,(CoHa)
with values below -1.5, are classified as “faulty” (in black)
by k-NN. The explanation is very simple: real DGA data
are very noisy and two DGA gases (namely CH, and CyH,4
in this example) are not enough to discriminate well between
“faulty” and “normal” transformers. For this reason, we see
on Fig. 1 “faulty” datapoints (red crosses) that have very
low concentrations of CH, and CyH4, lower than “normal”
datapoints (blue circles): those faulty datapoints may have
other gases at much higher concentrations, and we most likely
need to consider all seven DGA gases (and perhaps additional
information about the transformer) to discriminate well. This
figure should also serve as a cautionary tale about the risk of
a statistical learning algorithm that overfits the training data
but that generalizes poorly on additional test data.

1) k-Nearest Neighbors (k-NN): k-NN [4] is perhaps the
simplest non-parametric classification technique. For a given
data sample x, one defines the Euclidian distance d; =
[|x—x;||2 between x and each data point x; in the training set.
Based on that metric, k-NN selects the k£ nearest neighbors
of x; the predicted label y is the one which is dominant
among the k neighbors. k is a hyper-parameter that needs to
be optimized on a validation set.

The intuition for using k-NN classifiers in the case of DGA
data can be described as “reasoning by analogy”: to assess
the risk of a given DGA measurement we compare it to the
most similar DGA samples in the database. Fig. 1 (top left)

shows an example of the k-NN predictions using only two
input variables (here gases).

2) C-45 Decision Trees: Decision trees implement a se-
quence of binary decision rules on each feature [5]. For
instance, the k-th node in the binary decision tree might
perform the following test on the j-th feature of the i-th
sample: “IF(x;; > 65)THEN...ELSE...”, and branch out to
the “yes” or to the "no” sub-tree, according to the answer.
In the case of DGA, decision trees can be likened to the
tables of limit concentrations used in [3] to quantify whether a
transformer has dissolved gas-in-oil concentrations below safe
limits. Instead of pre-determined key gas concentrations or
concentration ratios, all these rules are however automatically
learned from the supplied training data: i.e. that the number
of nodes in the tree, along with its layout the choice of the
features x; ; and the thresholds ), in the previous example
are all adjustable parameters. C-45 did not need further hyper-
parameters”.

3) Logistic Regression: Linear classifiers can be seen as a
special case of a decision tree with a single node, where the
decision boundary is not an individual feature, but a linear
combination of the M input features, each of them weighted
by associated regression coefficients 3; (see Eq. 1). In the M-
dimensional space, each sample x is projected onto the axis
co-linear to vector (31,32, ..,8un)T, with offset 3. That
axis is orthogonal to the hyperplane defined by Eq. 1. The
binary decision is made simply by taking the sign (-1 or +1)
or the Kronecker § (0 or 1) of the projection (Eq. 2).

M

f(x) = Zﬁjl’rf—ﬁo 1)
=1

¥ = 0fx)>0 2)

Note that in this work, where DGA data are log-normalized,
the linear classifier defines a planar boundary in the log-space
of DGA data, but that this boundary is no longer planar in the
natural DGA space.

The decision taken by the linear classifier can be expressed
as a conditional probability distribution on the output label y,
given the data sample x (Eq. 3). Learning a logistic regression
classifier consists then in maximizing the probability of the
predicted label being correct for all the training data points.
We notice that this probability of the label being 1 goes from
0 (when f (x) is very negative), to 0.5 (when f (x) = 0) and
finally to 1 (when f (x) tends to infinity).

1

e ®)

ply=1x) =

4) Regularized Logistic Regression: Among parametric
models, regularization [6] is a heuristic aiming at ensuring
that the trained model does not overfit the training data and
that it gemeralizes well to unseen test data. This heuristic
assumes that, all other things being equal, a model where
the parameters have a smaller overall magnitude might overfit
less. Regularization therefore corresponds to a penalty on the
norm of the parameter vector (e.g. on vector (Bo,-..,0nm)
in the case of linear or logistic regression). In a probabilistic
framework, regularization corresponds to imposing a prior on
small values of the parameters (regression coefficients). A
hyperparameter A controls how much importance is given to
the regularization constraint over the quality of fit to the data.
Two popular norms are used for regularization: the Euclidian

3Matlab code taken from http://www.yom-tov.info/Uploads/C4_5.m.
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KNN accuracy=100.0% AUC=1.00

LLR accuracy=82.0% AUC=0.92

Linear SVM accuracy=76.0% AUC=0.83
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Comparison of 6 regression or classification techniques on a simplified two-dimensional version of the Duval dataset (see paper) consisting of

log-transformed and standardized values of dissolved gas analysis measures for CHs and CoHs. There are 167 datapoints: 117 “faulty” DGA measures (marked
as red or magenta crosses) and 50 “normal” ones (blue or cyan circles). Because the training datapoints are not easily separable in 2D, the accuracy and
Area Under the Curve (see paper) on the training set are generally not 100%. The test data points consist in the entire DGA values space. Output of the 6
decision functions goes from white (¥ = 1, meaning “no impending failure predicted”) to black (¥ = O, meaning “failure is deemed imminent”); for most
classification algorithms, we plot the continuously-valued probability of having § = 1 instead of the actual binary decision (y = O or ¥ = 1). The decision
boundary (at ¥ = 0.5) is marked in green. Note that we do not know the actual labels for the test data - this figure provides instead with an intuition of how
the classification and regression algorithms operate. K -Nearest Neighbors (KNN, top left) partitions the space in a binary way, according to the Euclidian
distances to the training datapoints. Weighted Kernel Regression (WKR, bottom middle) is a smoothed version of KNN, and Local Linear Regression (LLR,
top middle) performs linear regression on small neighborhoods, with an overall nonlinear behavior. Neural Networks (bottom left) cut the space into multiple
regions. Support Vector Machines (SVM, right) use only a subset of the datapoints (so-called support vectors, in cyan and magenta) to define the decision
boundary. Linear kernel SVMs (top right) behave like logistic regression and perform linear classification, while Gaussian kernel SVMs (bottom right) behave

like WKR.

L5 norm, whose result is that after optimization, the magnitude
of the parameters is “spread” across all the variables, and the
L1 norm, that tends to bring some parameters to zero, and
thus favors only a small subset of non-zero parameters [7].

In the case of DGA, L; norm-regularized logistic regression
tends to select only a few key gases in the decision function,
setting the value of the parameters for the other gases to
zero (thereby ignoring those gases in the classification). This
technique is useful to select the most relevant key gases for
the transformer failure prediction task.

Linear classifiers in general, including (regularized) logistic
regression, all behave in a similar way to the top right plot on
Fig. 1 (where we plot p (y = 1|x) for all x in the 2D plane).

5) Neural Networks: We consider here the Multi-Layer
Perceptron (MLP) architecture [8], which corresponds to a
neural network with one or more hidden layers (in this study,
we restricted ourselves to the single hidden layer architecture).
Intuitively, each layer of the neural net contains as many
“logistic regressions” as there are hidden nodes/units on that
layer, which means that each layer cuts its input space with as
many hyperplanes as there are hidden nodes. Each hidden node

is followed by a nonlinear function; in our implementation,
we used the hyperbolic tangent tanh that would squish the
output between -1 and 1. Other nonlinearities, such as the
logistic sigmoid (as in Eq. 3) are possible. Those nonlinearities
accentuate the separation made by the decision hyperplane.
Each successive layer combines linear combinations of the
decision function at each hidden node, and as an end-result, the
neural network defines its decision function using a partition of
the input feature space into multiple subspaces or polyhedrons.
Fig. 1 (bottom left) shows how a two-layer neural network with
10 hidden nodes defines a highly nonlinear decision boundary.

Learning the neural network classifier, i.e. adjusting the
parameters (“weights”) of the neural network, is done by error
back-propagation [8], [9]. The particular embodiment of our
training algorithm was stochastic gradient descent [10] with
a small momentum weight of 0.01 and with a learning rate
7 = 0.1 annealed by a factor of 0.99 every pass on the dataset,
trained until the validation error starts increasing. We cross-
validated two hyperparameters: the regularization weight A and
the number of hidden units.
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6) Support Vector Machines (SVM): Support Vector Ma-
chines [11] are a recent, popular and efficient statistical
learning tool that can be qualified as mostly non-parametric.
They rely on the definition of a kernel function k(x, x;) that
can be seen as a measure of symmetric “similarity” between
the two samples x and x;. The decision function § = d¢(x)>0
for a sample x is defined in terms of the kernel function
between x and the data points in the training set (as in Eq. 4);
it involves a minimal, sparse, set of support vectors {x;};. ¢
that are each given a weight «;. Learning in SVM corresponds
to finding a minimal set .S of support vectors that minimizes
the error on the training labels.

Fx) = aiik(x,x;) “4)
icS

We considered 3 different kernels in this study: the linear
kernel, the polynomial kernel and the Gaussian kernel; see
Fig. 1 (right) for a comparison between linear and Gaussian
kernels. The linear kernel (k(x,x;) = xTx;) enables us
to express the learning of a linear classifier as an SVM
problem; in our experiments, we use this algorithm instead of
logistic regression. The polynomial kernel (we used second-
order polynomials) adds a (parabolic) curvature to the decision
surface. Finally, the Gaussian kernel defines a distance-based

similarity metric between data samples:

k(x,x;) = e 4 = emIbxill3 5)

SVMs are also called maximum margin classifiers, be-
cause their decision boundary is, by construction, as far as
possible from the training data points, so that they remain
well separated according to their labels. Maximum margin
training enables better generalization of the classifier to unseen
examples, and it is equivalent to Lo-norm regularization [12].
We cross-validated the SVM’s regularization coefficient C' as
well as the Gaussian spread coefficient ~.

D. Regression of the Time-to-Failure

1) Linear Regression and LASSO: Linear regression is
based on the same principles as linear classification, but in-
stead of classifying the sign of the prediction f (x) (see Eq. 1),
one uses the prediction as is: § = f(x). Fig. 1 (top right)
essentially shows an example of linear regression. Similarly to
the classification case, an Ly-norm or L;-norm regularization
can be imposed on the regression coefficients (S, ..., 5nm)
(respectively corresponding to ridge regression [6] or to the
LASSO [7)]).

In terms of DGA, a linear regression model establishes
a linear dependency between every single variable/regressor
(here log-concentrations) x; and the target/predicted labels y
(respectively ).

2) Weighted Kernel Regression (WKR): Weighted kernel
regression [13] is the simplest among the non-parametric
regression algorithms, and it is the continuously-valued equiv-
alent of the k-NN algorithm (see Fig. 1, bottom). Once a
distance d; is computed between the sample x and each
data point x; in the training set, it is used in a Gaussian
kernel function (Eq. 5) (where the “spread” coefficient v is
a hyper-parameter) to compute the weight of data point x;.
The decision function is a weighted interpolation over all the
training dataset:

— ZALI k(xvxi)yi
y===1 "= (6)
Y k(x,x;)

WKR assumes a smoothness within the input data, and in
our case, claims that two transformers that have similar DGA
measures should face similar risks of failure.

3) Local Linear Regression (LLR): Local linear regression
interpolates a prediction ¢ to a sample x by fitting a parametric
linear regression model to the neighborhood of x in the
Euclidian space [14]. It therefore both benefits from the
locality of WKR and from the regressor dependency of linear
regression. See Fig. 1 (top) for an example of LLR in 2D.

4) Neural Network Regression: Just like a linear regressor
is a linear (logistic) classifier without the binary decision,
a neural network regressor can be seen as a neural net-
work where the outputs of the last, predictive, layer are
continuously-valued and not categorical. We otherwise used
the same architecture and the same training algorithm as for
the classifier. The output of the decision function of a neural
net regressor can actually be used as input to Eq. 3, i.e. to the
probability of having y = 1 in a neural net classifier.

5) Support Vector Regression (SVR): Although support
vector regression presents a few subtleties compared to the
SVM classification algorithm [15] (in particular, one specifies
the tolerable margin of error hyper-parameter €, which we set
to 0.01), the main principles (kernel method, maximum margin
classifier, optimization) remain the same.

E. Semi-Supervised Algorithms

In presence of large amounts of unlabeled data (as was the
case for the utility company’s dataset explained in the paper),
it can be helpful to include them along the labeled data when
training the predictor. The intuition behind Semi-Supervised
Learning (SSL) is indeed that the learner could get better
preparation for the test set “exam” if it knew the distribution
of the test data points (aka “questions”). Note that the test set
labels (aka “answers”) would still not be supplied at training
time.

1) Semi-Supervised Classification: Low Dimensional Scal-
ing (LDS) [16] builds on kernel methods and SVMs for
binary classification. When no label information is available, it
exploits the distance (in the feature space) between data points
to build a graph of nearest neighbors. It then uses the graph to
find low density regions (i.e. regions of the feature space where
fewer data points are present) in order to place the binary
decision boundary in those low density regions. We chose this
algorithm because it obtained state-of-the-art results on various
real-world datasets (see the comparative study [17]), and we
used an out-of-the box implementation of LDS*, setting the
Gaussian kernel spread to ¢ = 1, and cross-validating the
regularization penalty C' and the LDS-specific graph exponent

2) Semi-Supervised Regression: Finally, we also considered
an SSL algorithm for regression and chose Local Linear Semi-
supervised Regression (LLSSR) [18]. LLSSR extends Local
Linear Regression, with an additional assumption that the
value of the regression function should not change suddenly.
In other words, we hypothesize that DGA samples that are
close to each other should map to similar risks of failure.
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