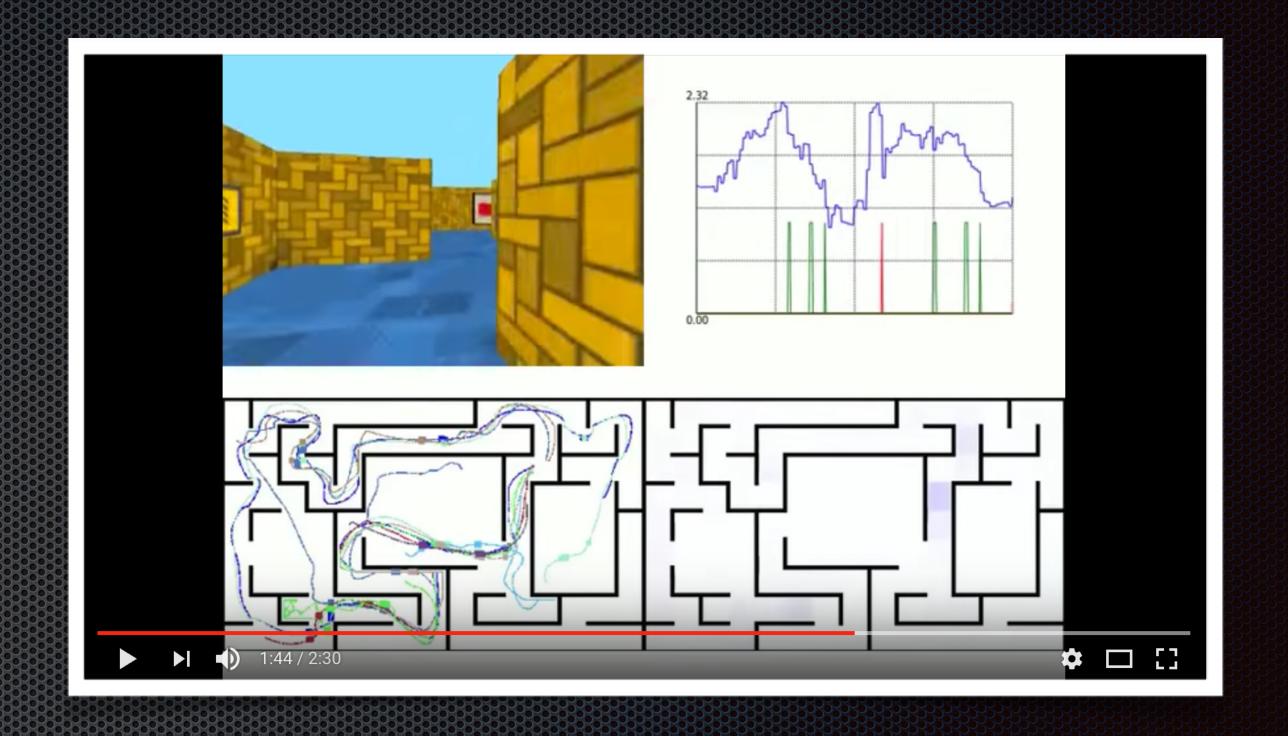
(Deep) Learning and Playing with Sequences

Piotr Mirowski, DeepMind



Quiz

KING LEAR:

O, if you were a feeble sight, the courtesy of your law, Your sight and several breath, will wear the gods With his heads, and my hands are wonder'd at the deeds, So drop upon your lordship's head, and your opinion Shall be against your honour.

Who wrote these lines?

- A. William Shakespeare
- B. William Shakespeare's ghostwriter
- C. Ben Johnson
- D. Molière (translation)
- E. Andrej Karpathy's recurrent neural network

Why? (examples of applications)

Language modeling

Sentence completion

Sentence-to-sentence machine translation

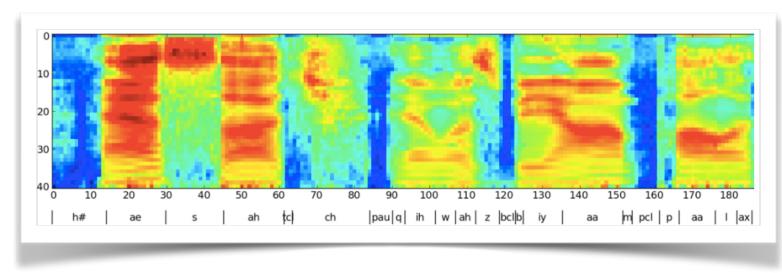
Speech recognition

Image captioning
Text generation
Query answering

Control in 3D games

Learning to navigate

[Image credits: Vinyals et al (2014)]



[Graves et al. (2013b) "Speech recognition with deep recurrent neural networks", *ICASSP*]

(Deep) Learning and Playing with Sequences — Piotr Mirowski

How? (what this talk will cover)

Fixed-memory language models

n-grams and Markov chains

Learning representations

Word embeddings

Maximum likelihood learning

Neural language models

Recurrent Neural Networks (RNNs)

Long Short-Term Memory RNNs

Attention and memory models

Control through Reinforcement Learning

Language modeling

Sentence completion

Machine translation

Text generation

Speech recognition

Image captioning

Query answering

Playing 3D games

Learning to navigate

How? (what this talk will cover)

Fixed-memory language models

n-grams and Markov chains

Learning representations

Word embeddings

Maximum likelihood learning

Neural language models

Recurrent Neural Networks (RNNs)

Long Short-Term Memory RNNs

Attention and memory models

Control through Reinforcement Learning

Language modeling

Sentence completion

Machine translation

Text generation

Speech recognition

Image captioning

Query answering

Playing 3D games

Learning to navigate

Language models

Quantify, word by word, how likely is a sequence of words

Applications:

Speech recognition
Sentence completion
Sentence translation
Search query formulation
Question answering

$$P(w_1, w_2, \dots, w_{T-1}, w_T) \approx \prod_{t=1}^{T} P(w_t | w_{t-1}, \dots, w_{t-n+1})$$

what to cook with broccoli and __
what to cook with broccoli and beef
what to cook with broccoli and butter
what to cook with broccoli and blenders
what to cook with broccoli and boomboxes

the american popular culture americans popular culture american popular culture the nerds in popular culture mayor kind popular culture near can popular culture the mere kind popular culture ...

Chain rule of probability

$$P(w_1, w_2, \dots, w_{T-1}, w_T) = \prod_{t=1}^{T} P(w_t | w_{t-1}, w_{t-2}, \dots, w_1)$$

the	cat	sat	on	the	mat	$P(w_1)$
the	cat	sat	on	the	mat	$P(w_2 w_1)$
the	cat	sat	on	the	mat	$P(w_3 w_2,w_1)$
the	cat	sat	on	the	mat	$P(w_4 w_3, w_2, w_1)$
the	cat	sat	on	the	mat	$P(w_5 w_4, w_3, w_2, w_1)$
the	cat	sat	on	the	mat	$P(w_6 w_5, w_4, w_3, w_2, w_1)$

n-grams and Markov chains

$$P(w_1, w_2, \dots, w_{T-1}, w_T) \approx \prod_{t=1}^{T} P(w_t | w_{t-1}, \dots, w_{t-n+1})$$

the	cat	sat	on	the	mat	$P(w_1)$
the	cat	sat	on	the	mat	$P(w_2 w_1)$
the	cat	sat	on	the	mat	$P(w_3 w_2,w_1)$
the	cat	sat	on	the	mat	$P(w_4 w_3,w_2)$
the	cat	sat	on	the	mat	$P(w_5 w_4,w_3)$
the	cat	sat	on	the	mat	$P(w_6 w_5,w_4)$

n-grams and conditional word probability

		contex	t		target	$P(w_t w_{t-1}, w_{t-2}, \dots w_{t-5})$
the	cat	sat	on	the	mat	0.15
w_{t-5}	w_{t-4}	w_{t-3}	w_{t-2}	w_{t-1}	w_t	
the	cat	sat	on	the	rug	0.12
the	cat	sat	on	the	hat	0.09
the	cat	sat	on	the	dog	0.01
the	cat	sat	on	the	the	0
the	cat	sat	on	the	sat	0
the	cat	sat	on	the	robot	?
the	cat	sat	on	the	printer	?

Limitations of *n*-gram language models

No memory **beyond** *n* **words** (e.g., this sentence generated by Claude Shannon):

"The head and frontal attack on an English writer that the character of this point is therefore another method for the letters that the time of whoever told the problem for an unexpected..."

Curse of dimensionality:

n-grams need exponential number of examples for a vocabulary of *V* words:

Vⁿ possible n-grams

No notion of word similarity

Solution: word embeddings-based n-grams

How? (what this talk will cover)

Fixed-memory language models

n-grams and Markov chains

Learning representations

Word embeddings

Maximum likelihood learning

Neural language models

Recurrent Neural Networks (RNNs)

Long Short-Term Memory RNNs

Attention and memory models

Control through Reinforcement Learning

Language modeling

Sentence completion

Machine translation

Text generation

Speech recognition

Image captioning

Query answering

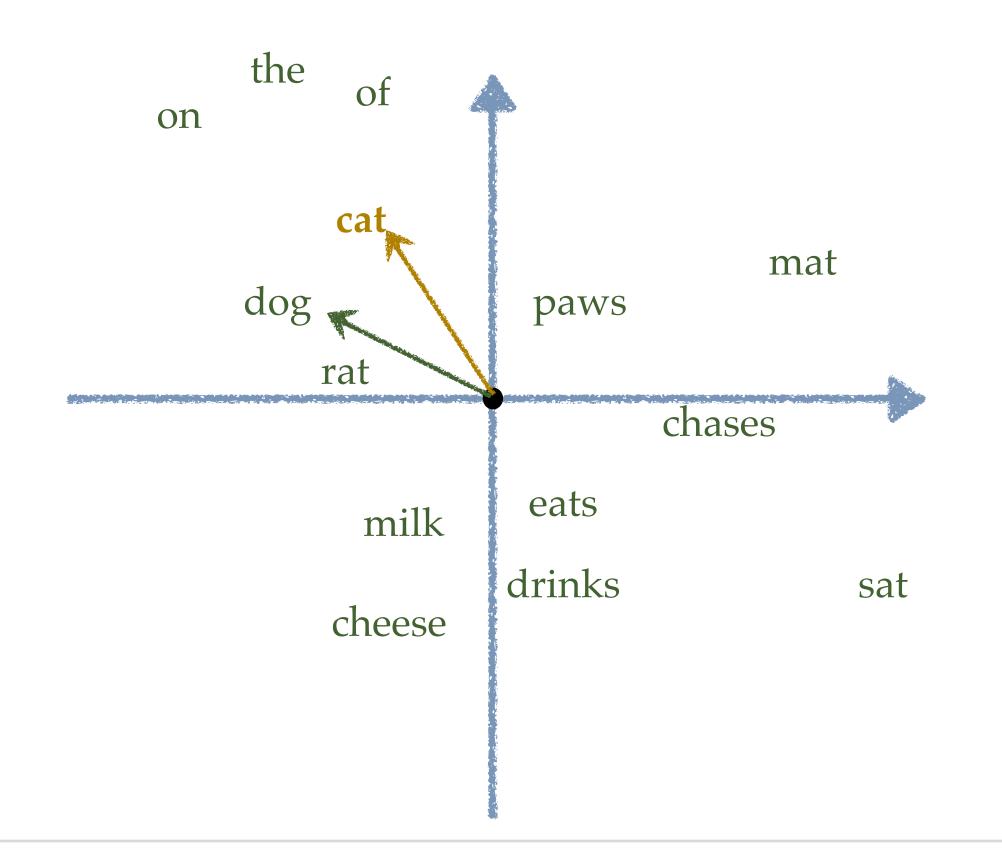
Playing 3D games

Learning to navigate

Words as vectors

Vector-space representation

of word vectors

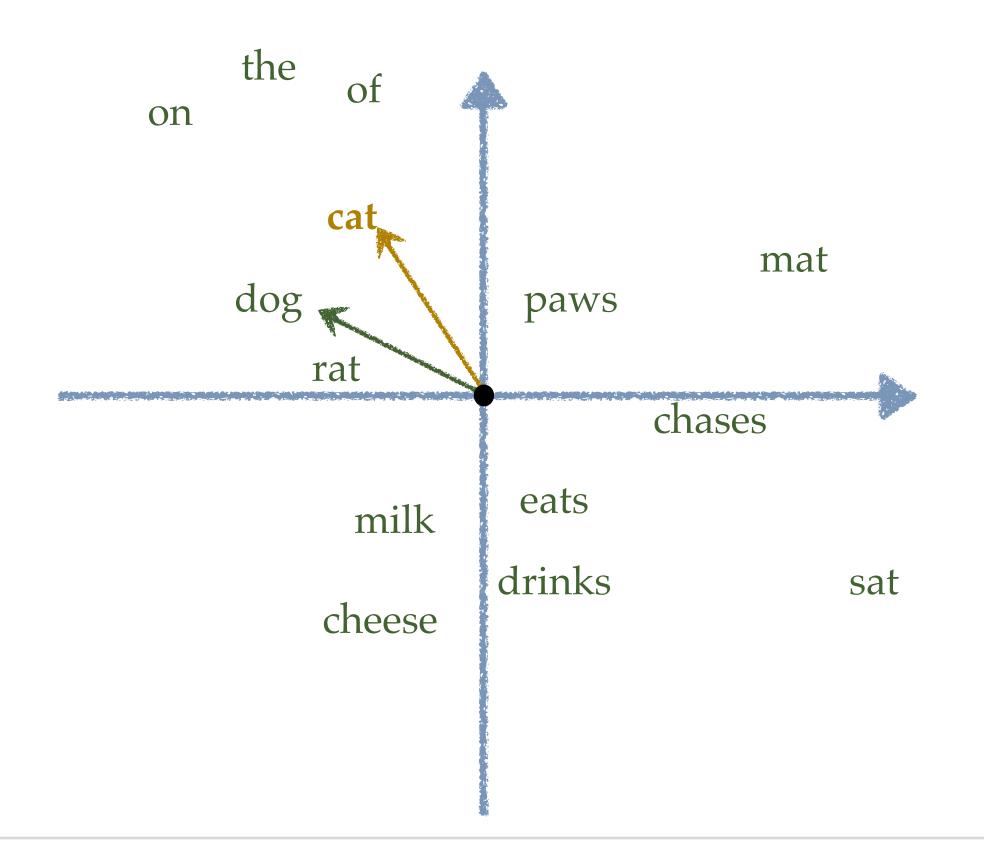


We will learn
these
word vector
representations
from data

Similarity between word vectors

Vector-space representation

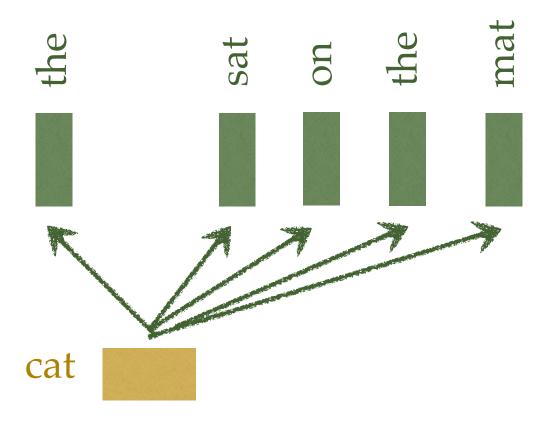
of word vectors



Vector-space **cosine similarity** between words *w* and *v*

$$\cos(w, v) = \frac{\mathbf{z_w}^T \mathbf{z_v}}{||\mathbf{z_w}||_2 ||\mathbf{z_v}||_2}$$

the cat sat on the mat



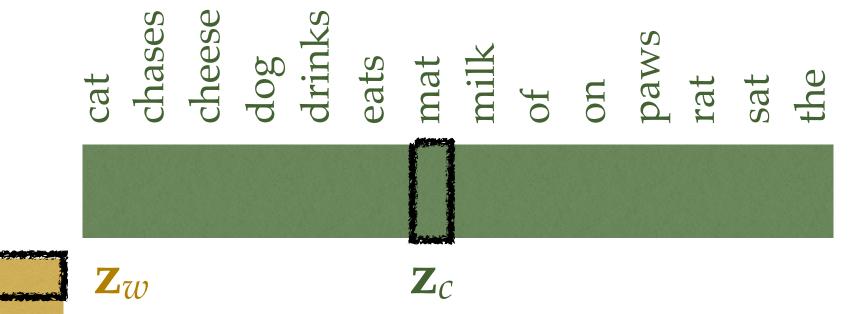
rat

[Andriy Mnih and Koray Kavukcuoglu (2013)

"Learning word embeddings efficiently with noise-contrastive estimation", NIPS; Tomas Mikolov et al. (2013a) "Efficient Estimation of Word Representation in Vector Space", arXiv;

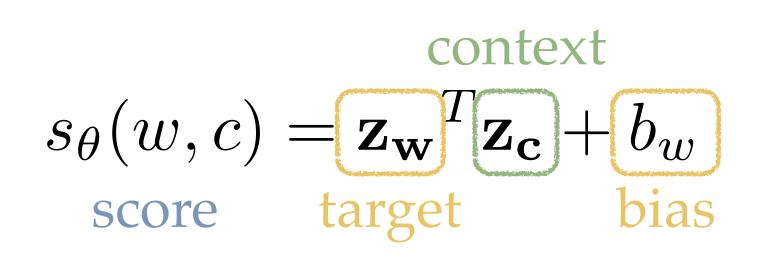
Tomas Mikolov et al. (2013b)

"Distributed Representation of Words and Phrases and Their Compositionality", NIPS]



the cat sat on the mat

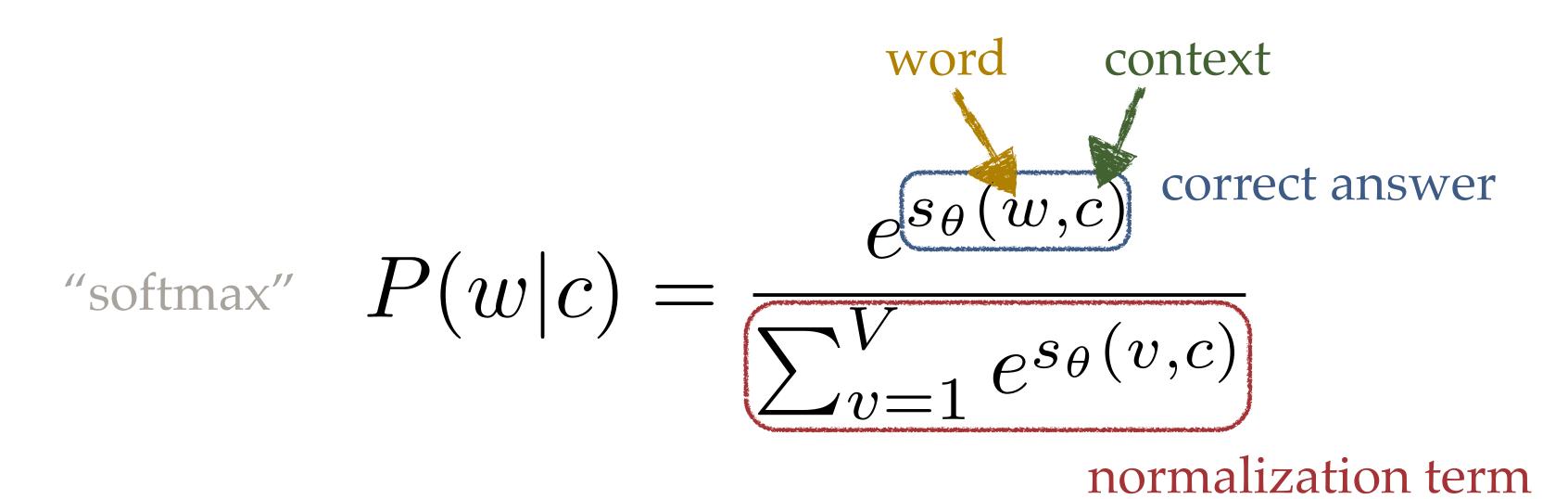
Word embedding vectors have size D much smaller than vocabulary V



Learn
word embeddings
iteratively
using pairs (w, c)

Learn context-dependent word probability

Learn model (e.g., word embeddings) parameterized by θ , so that:



Maximum likelihood learning

Stochastic gradient ascent (or descent):

after showing each pair (word w, context c), update the parameters θ

$$\theta \leftarrow \theta + \eta \frac{\partial L(w, c; \theta)}{\partial \theta}$$

maximize
$$\log P(w|c) = s_{\theta}(w,c) - \log \sum_{v=1}^{V} e^{s_{\theta}(v,c)}$$

Learn context-dependent word probability

high-dimensional normalization term (e.g., *V*>100k words)

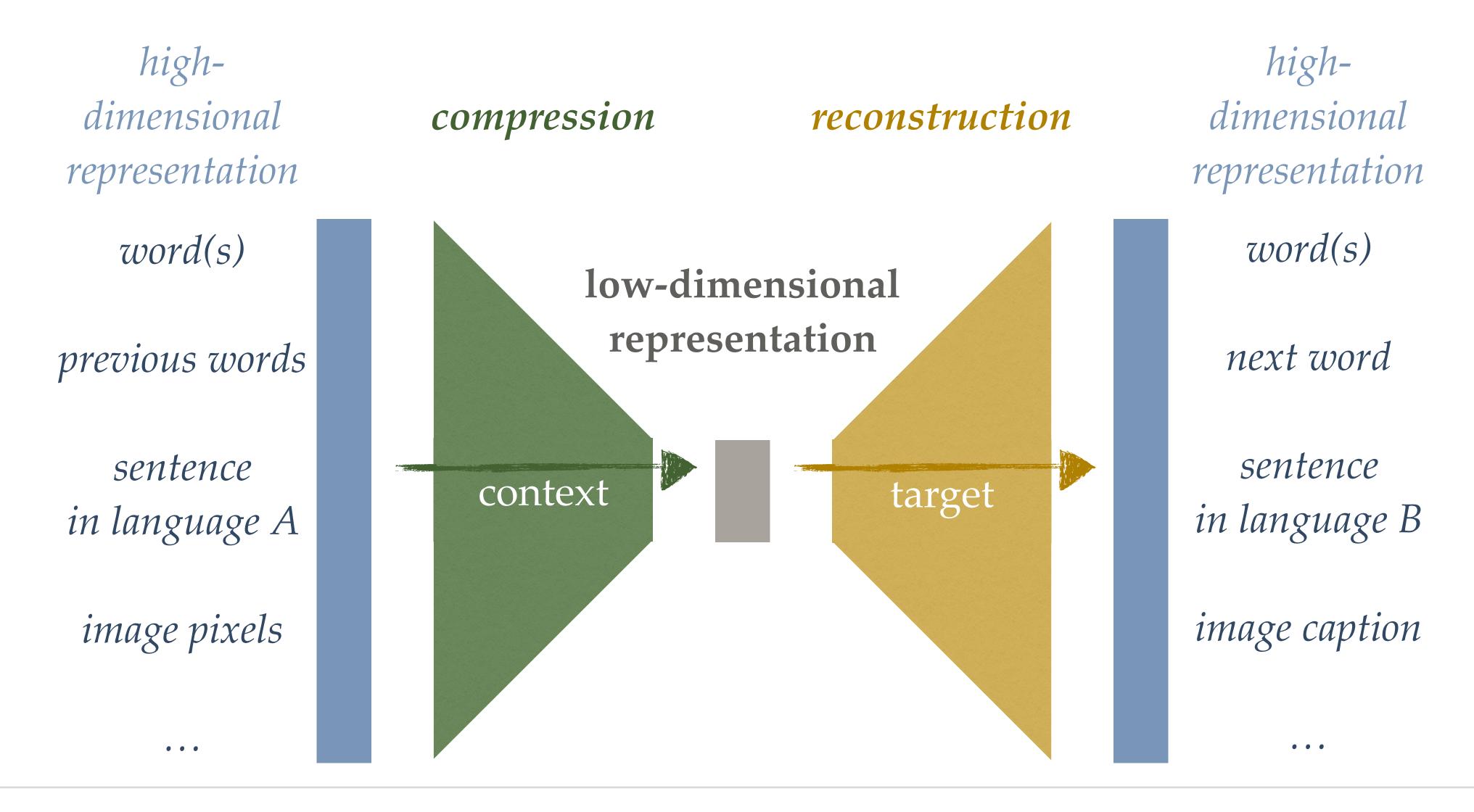
$$P(w|c) = \frac{e^{s_{\theta}(w,c)}}{\sum_{v=1}^{V} e^{s_{\theta}(v,c)}}$$

normalization term

Solution #1:
approximate
normalisation term

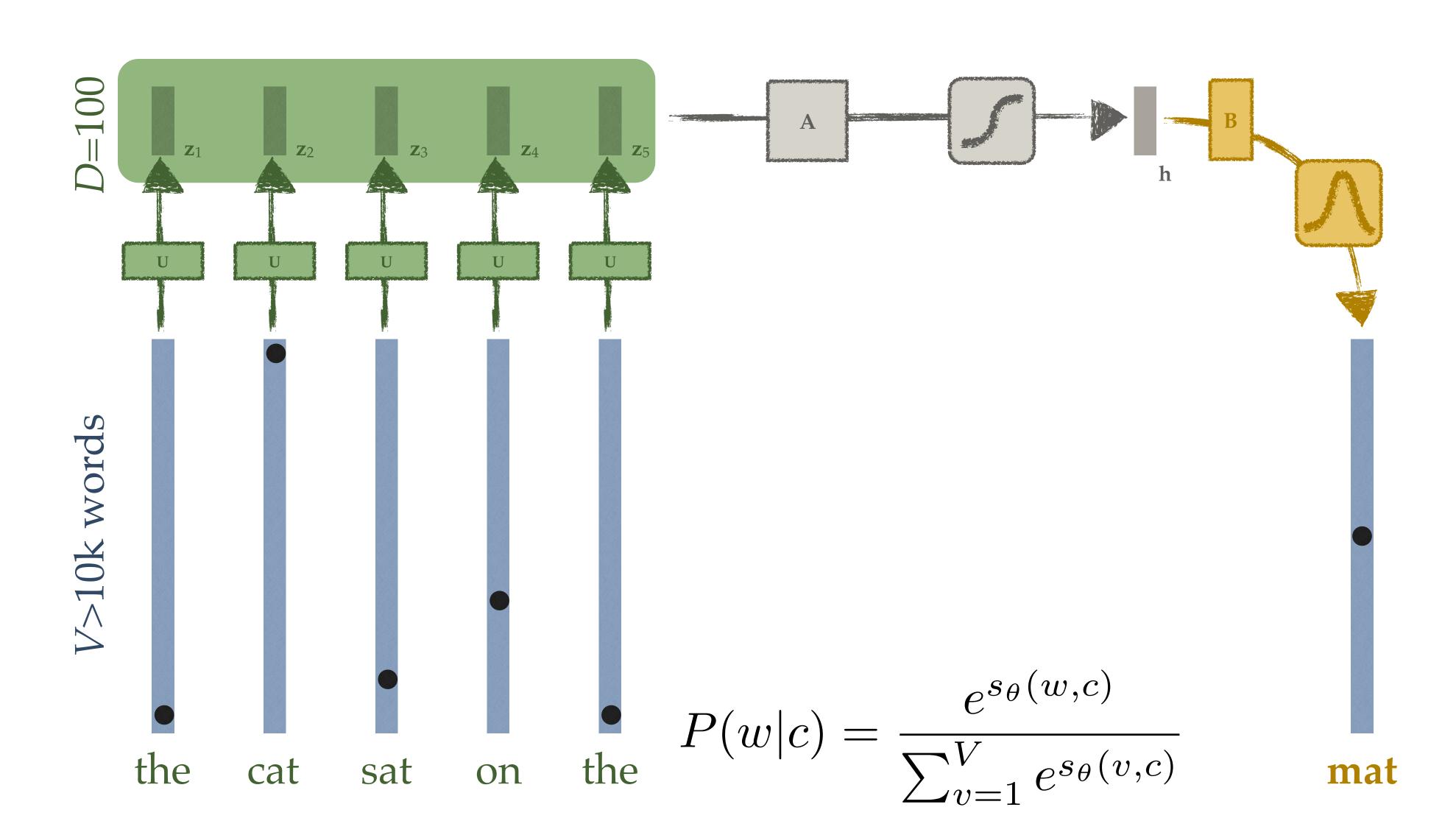
Solution #2:
parallelise
on a GPU

Dimensionality reduction



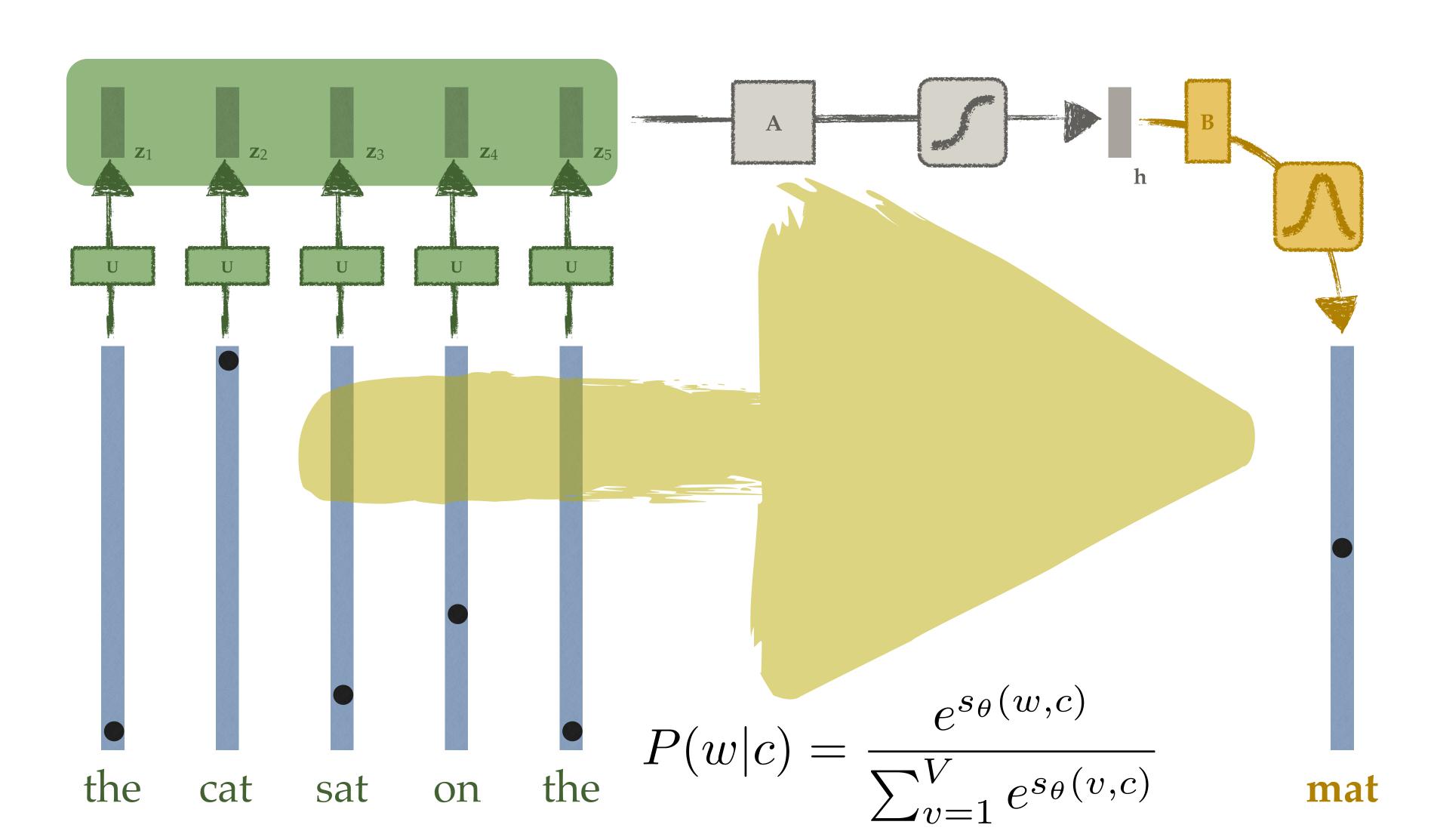
Neural Probabilistic Language Models

[Yoshua Bengio et al. (2001, 2003), "A Neural Probabilistic Language Model", *JMLR*; Andriy Mnih and Geoff Hinton, "Three new graphical models for statistical language modeling", *ICML*]



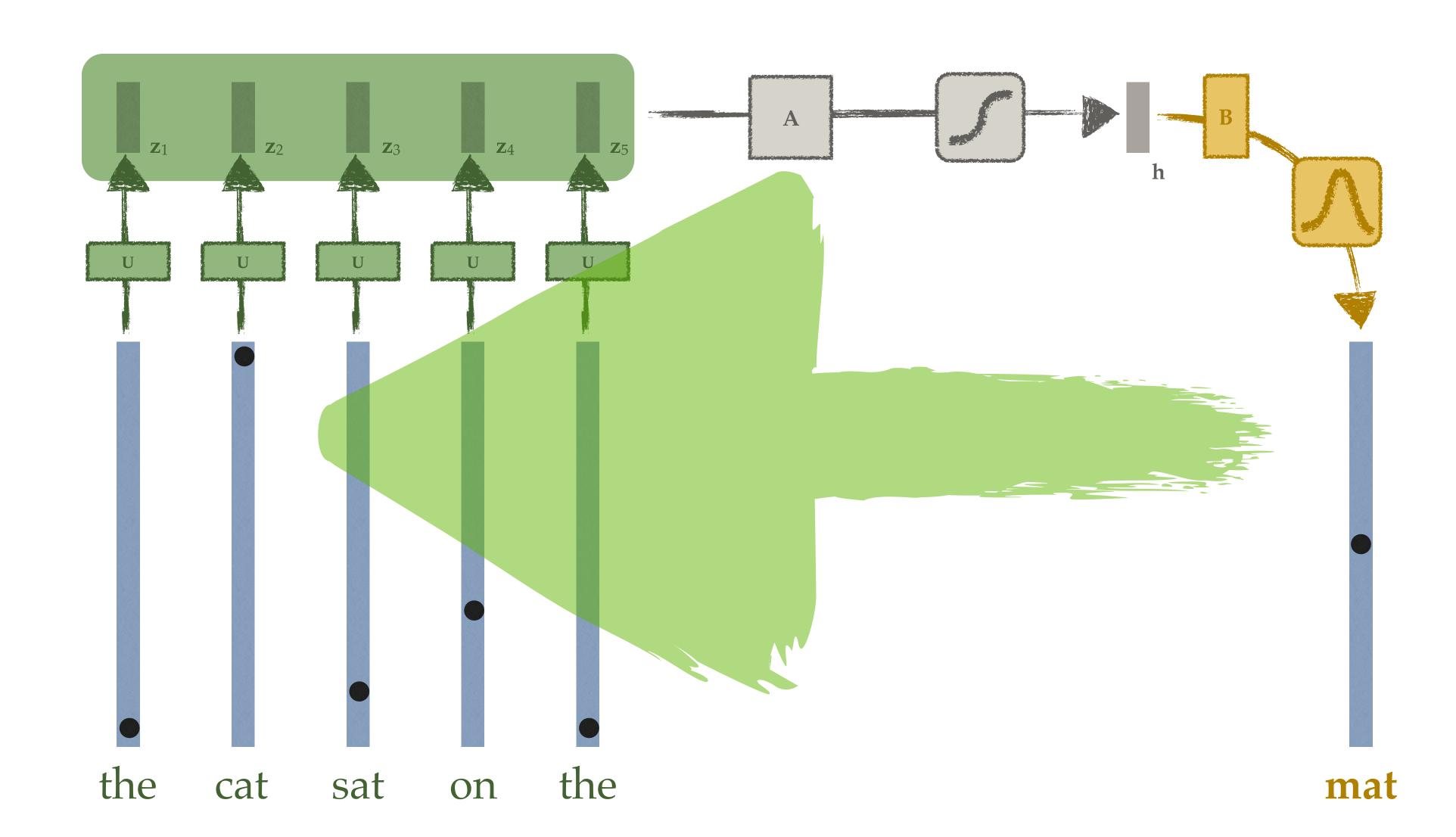
Learning LMs: forward propagation

[Yoshua Bengio et al. (2001, 2003), "A Neural Probabilistic Language Model", *JMLR*; Andriy Mnih and Geoff Hinton, "Three new graphical models for statistical language modeling", *ICML*]



Learning LMs: gradient back-propagation

[Yoshua Bengio et al. (2001, 2003), "A Neural Probabilistic Language Model", *JMLR*; Andriy Mnih and Geoff Hinton, "Three new graphical models for statistical language modeling", *ICML*]



How? (what this talk will cover)

n-grams and Markov chains
Learning representations
Word embeddings
Maximum likelihood learning
Neural language models

Recurrent Neural Networks (RNNs)

Long Short-Term Memory RNNs
Attention and memory models
Control through Reinforcement Learning

Language modeling

Sentence completion

Machine translation

Text generation

Speech recognition

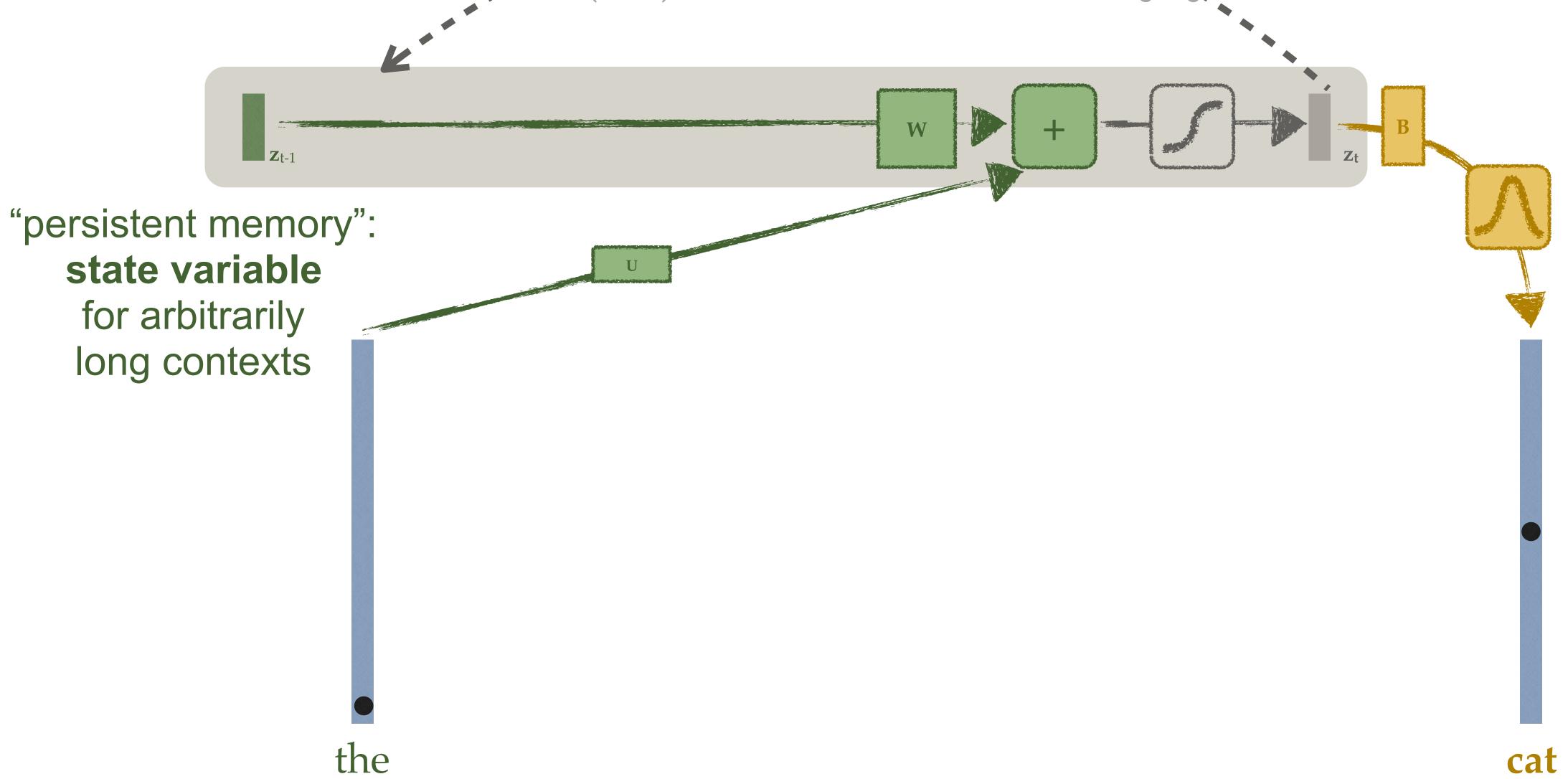
Image captioning

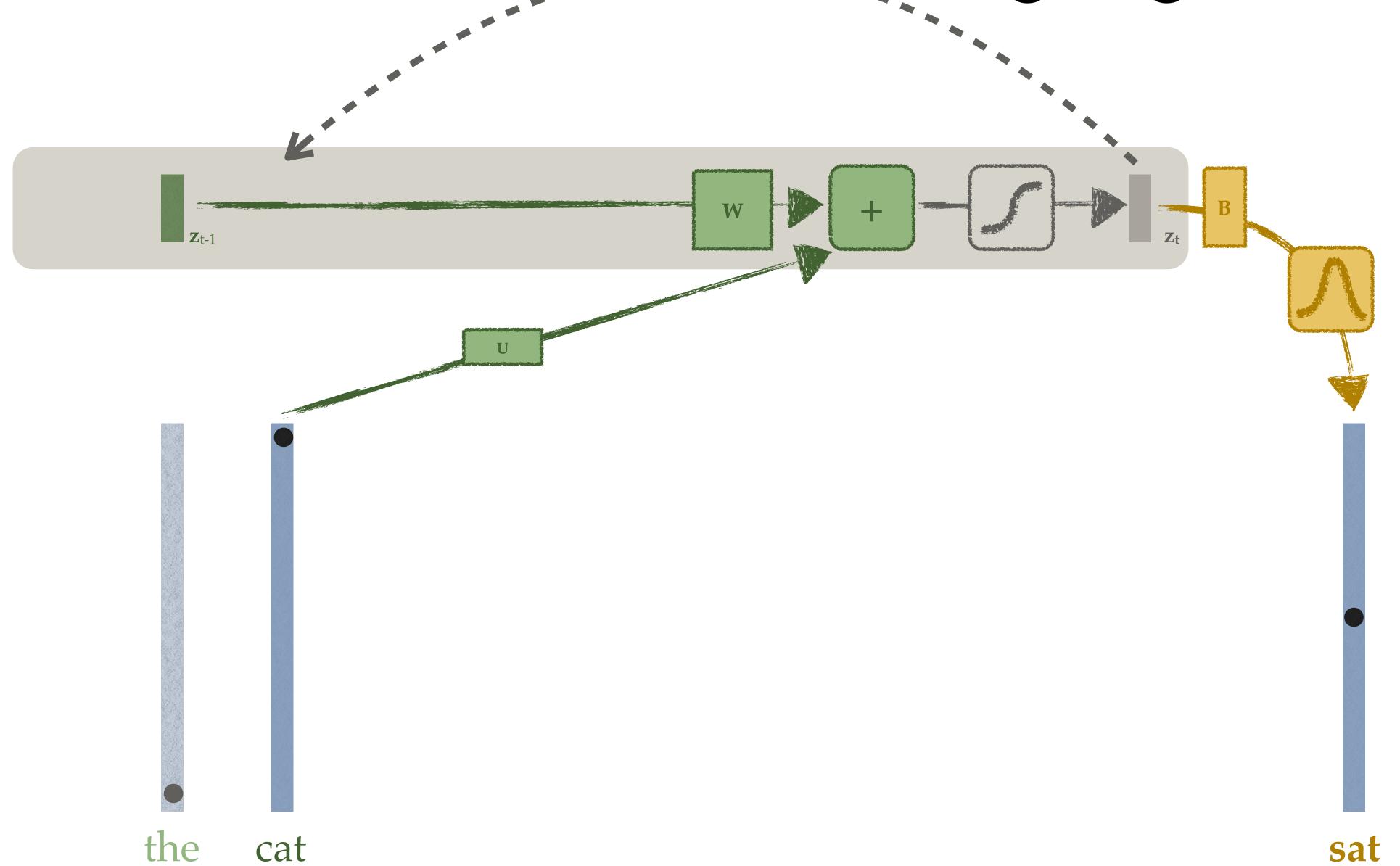
Query answering

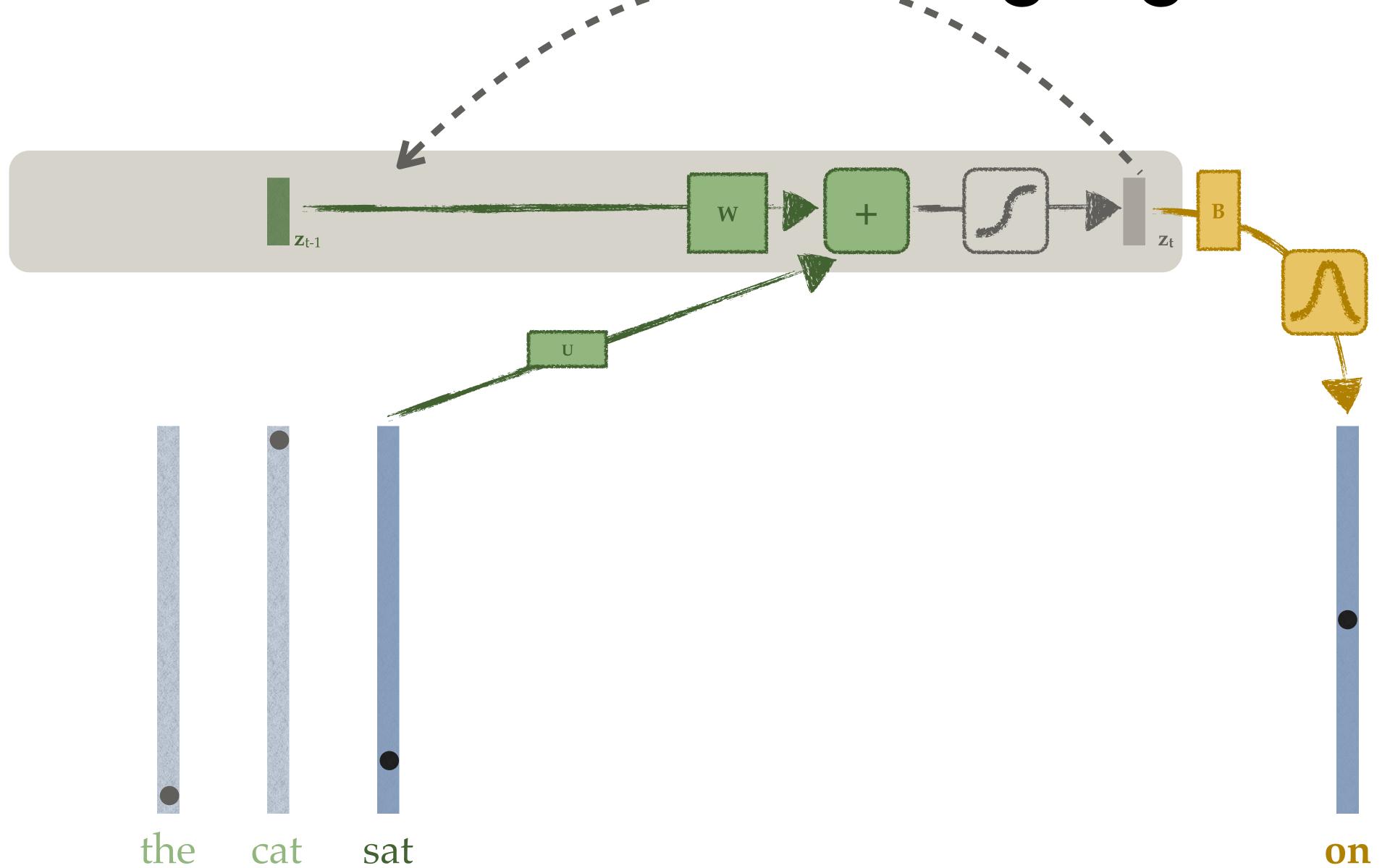
Playing 3D games

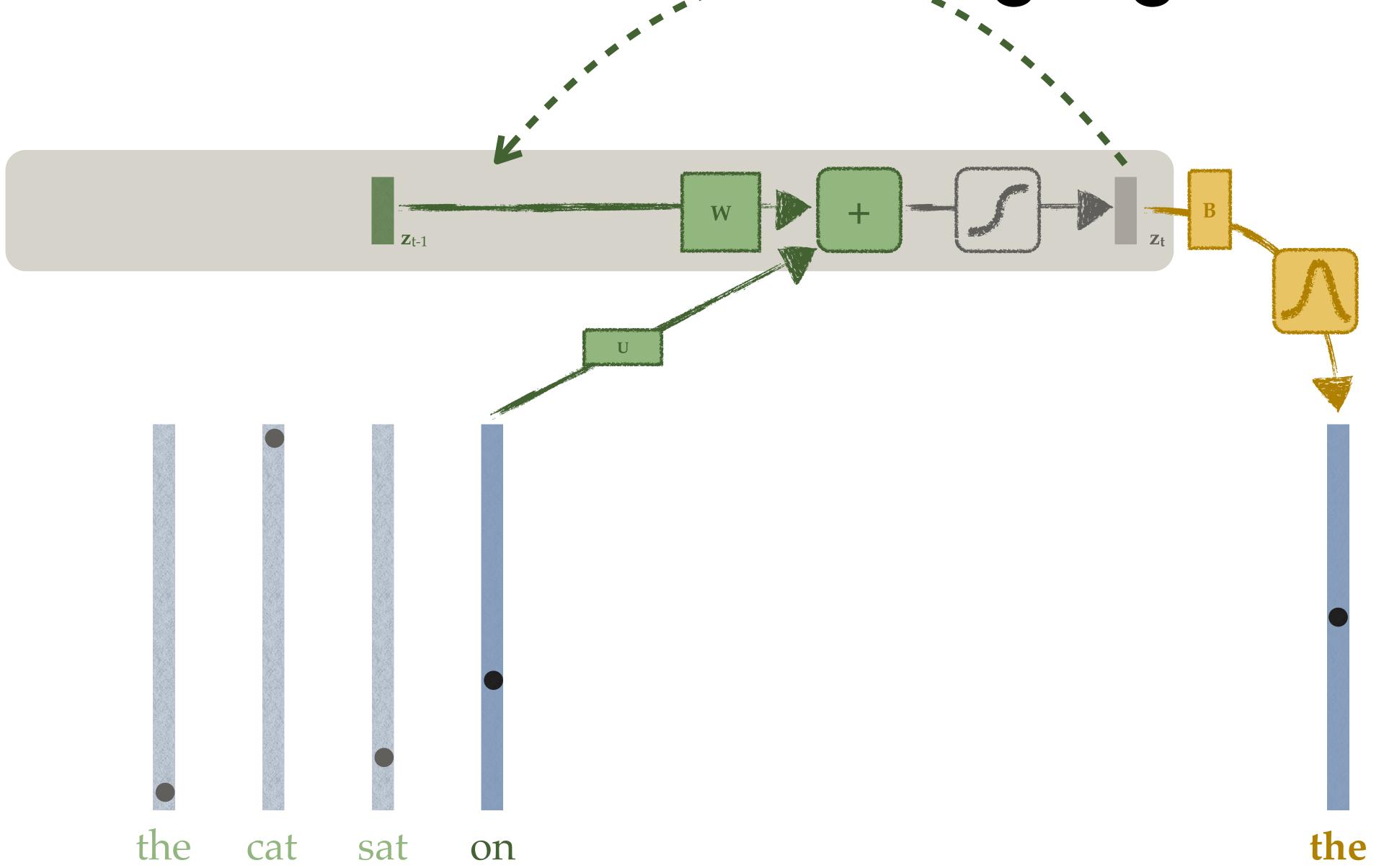
Learning to navigate

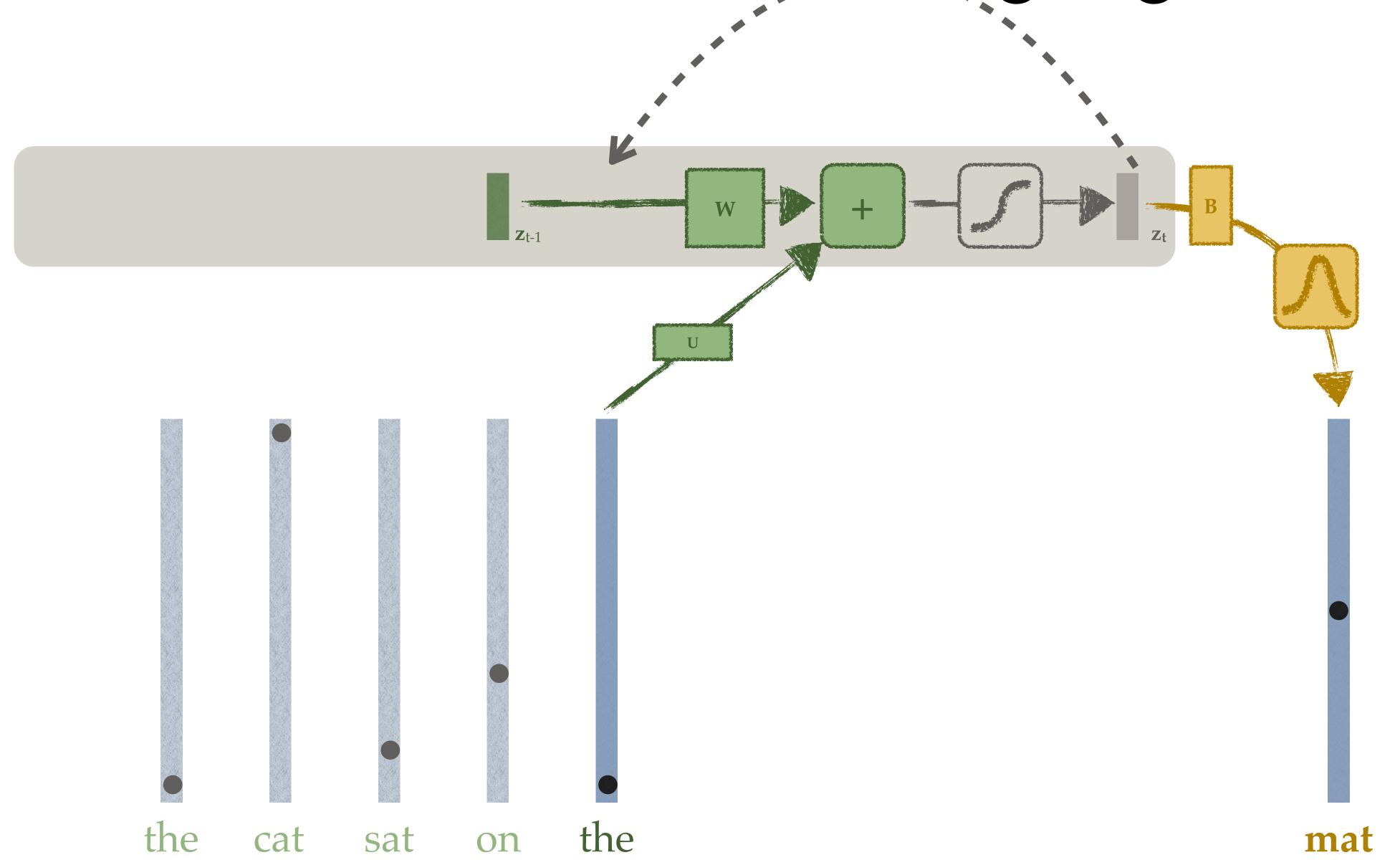
[Jeffrey L Elman (1991) "Distributed representations, simple recurrent networks and grammatical structure", *Machine Learning*; Tomas Mikolov et al. (2010) "Recurrent neural network based language model", *INTERSPEECH*]

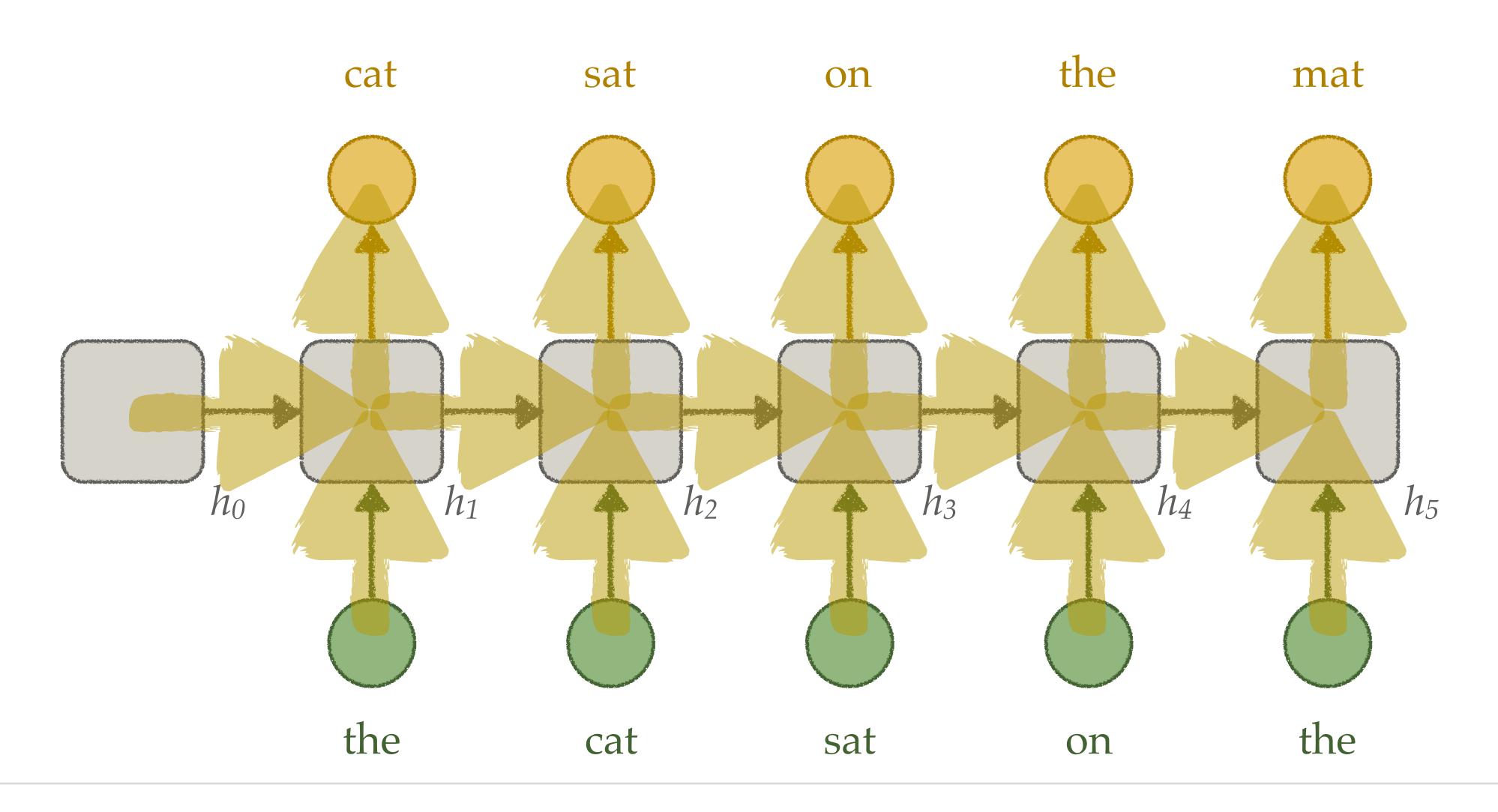




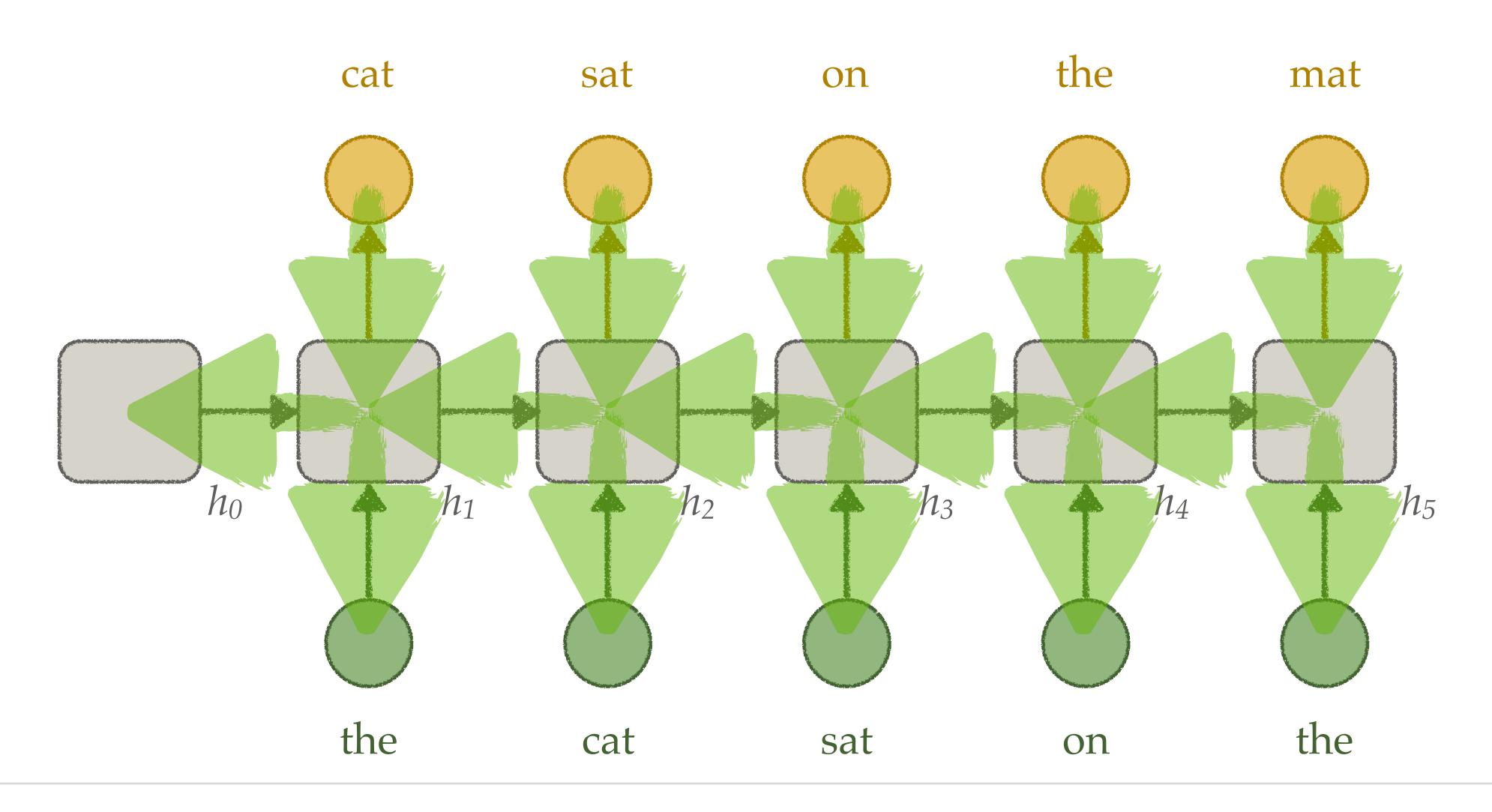








Back-Propagation Through Time



Sentence completion task

Microsoft Research Sentence Completion Task

[Geoff Zweig and Chris Burges (2011), "The Microsoft Research Sentence Completion Challenge", MSR Technical Report]

Training set:

~520 novels (19th century)

48M words

Evaluation on 1024 sentences

From 5 Sherlock Holmes novels

```
1 missing word, 5 choices:

That is his generous
That is his mother's
That is his successful
That is his main
That is his favourite

That is his favourite

fault, but on the whole he's a good worker.

fault, but on the whole he's a good worker.

fault, but on the whole he's a good worker.

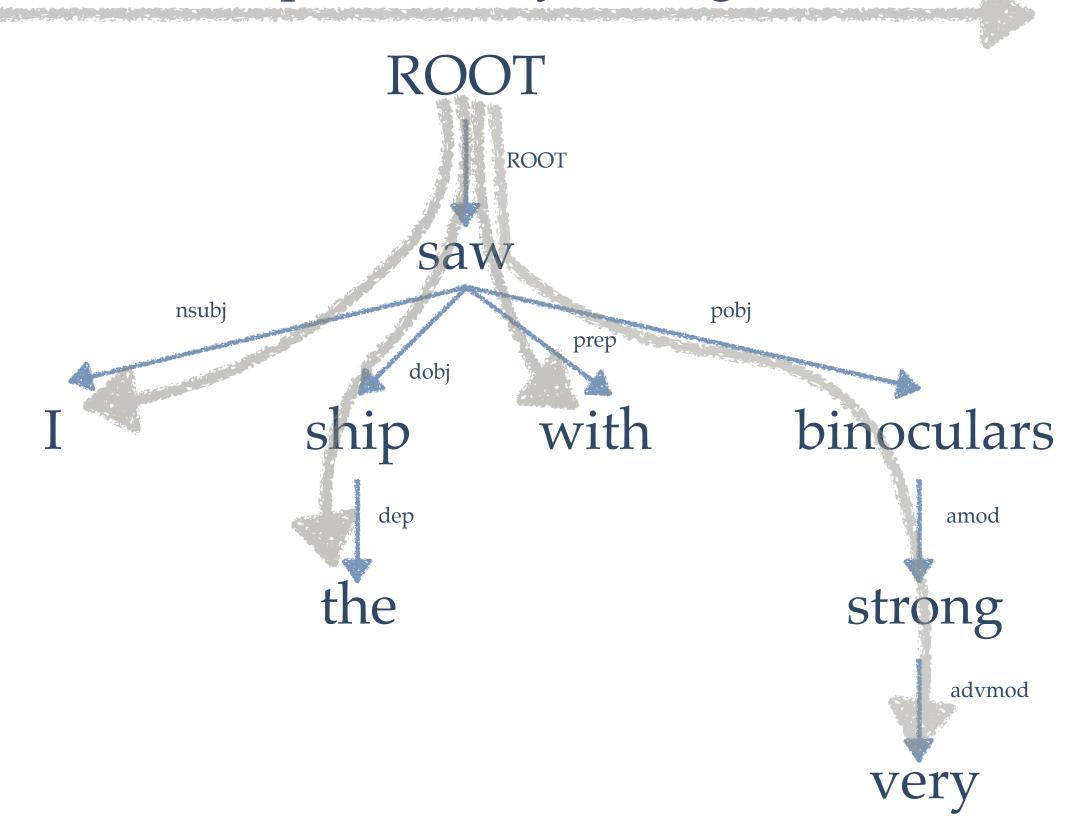
fault, but on the whole he's a good worker.

fault, but on the whole he's a good worker.
```

4 grammatically correct impostors

Beyond sequential: tree-based RNNs

I saw a ship with very strong binoculars



Algorithm	Accuracy (test set)
random	20%
SVD (word-paragraph)	49%
skip-gram	48%
smoothed 4-gram	39%
RNN + 4-gram features	45%
RNN on dependency tree	53%
Long Short-Term Memory	63%
human	90%

[Piotr Mirowski and Andreas Vlachos (2015) "Dependency recurrent neural language models for sentence completion", *ACL*; Kai Sheng et al. (2015) "Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks", *ACL*; Xiaodan Zhu et al. (2015) "Long Short-Term Memory Over Recursive Structures", *ICML*]

How? (what this talk will cover)

Fixed-memory language models

n-grams and Markov chains

Learning representations

Word embeddings

Maximum likelihood learning

Neural language models

Recurrent Neural Networks (RNNs)

Long Short-Term Memory RNNs

Attention and memory models

Control through Reinforcement Learning

Language modeling

Sentence completion

Machine translation

Text generation

Speech recognition

Image captioning

Query answering

Playing 3D games

Learning to navigate

End-to-end natural language processing

One integrated algorithm for:

Speech recognition from acoustic vectors to text

Machine translation from one language to another

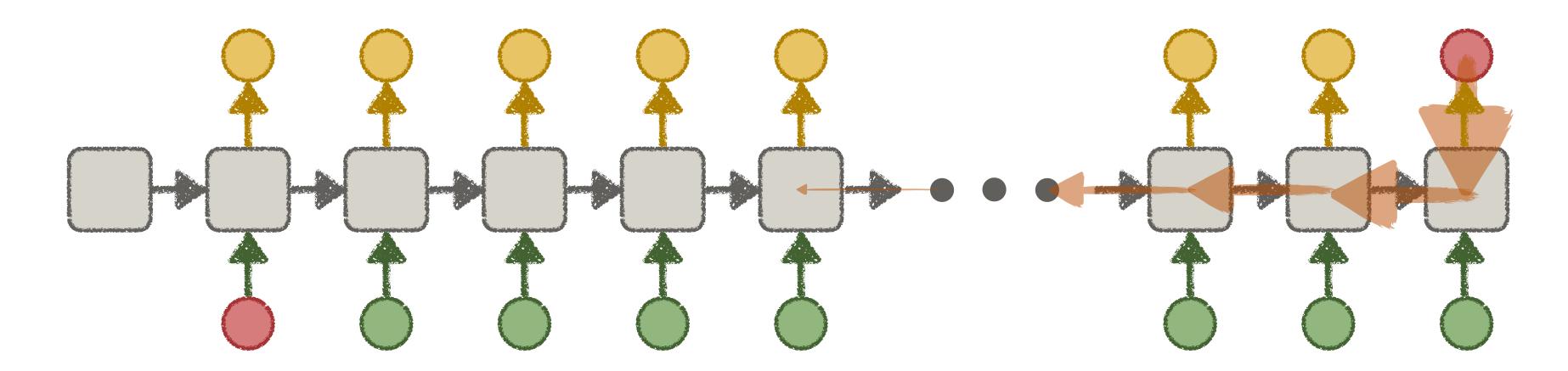
Image captioning from image to text

[Image credits: Vinyals et al (2014)]

Learning long-range dependencies...

... is difficult for Recurrent Neural Networks

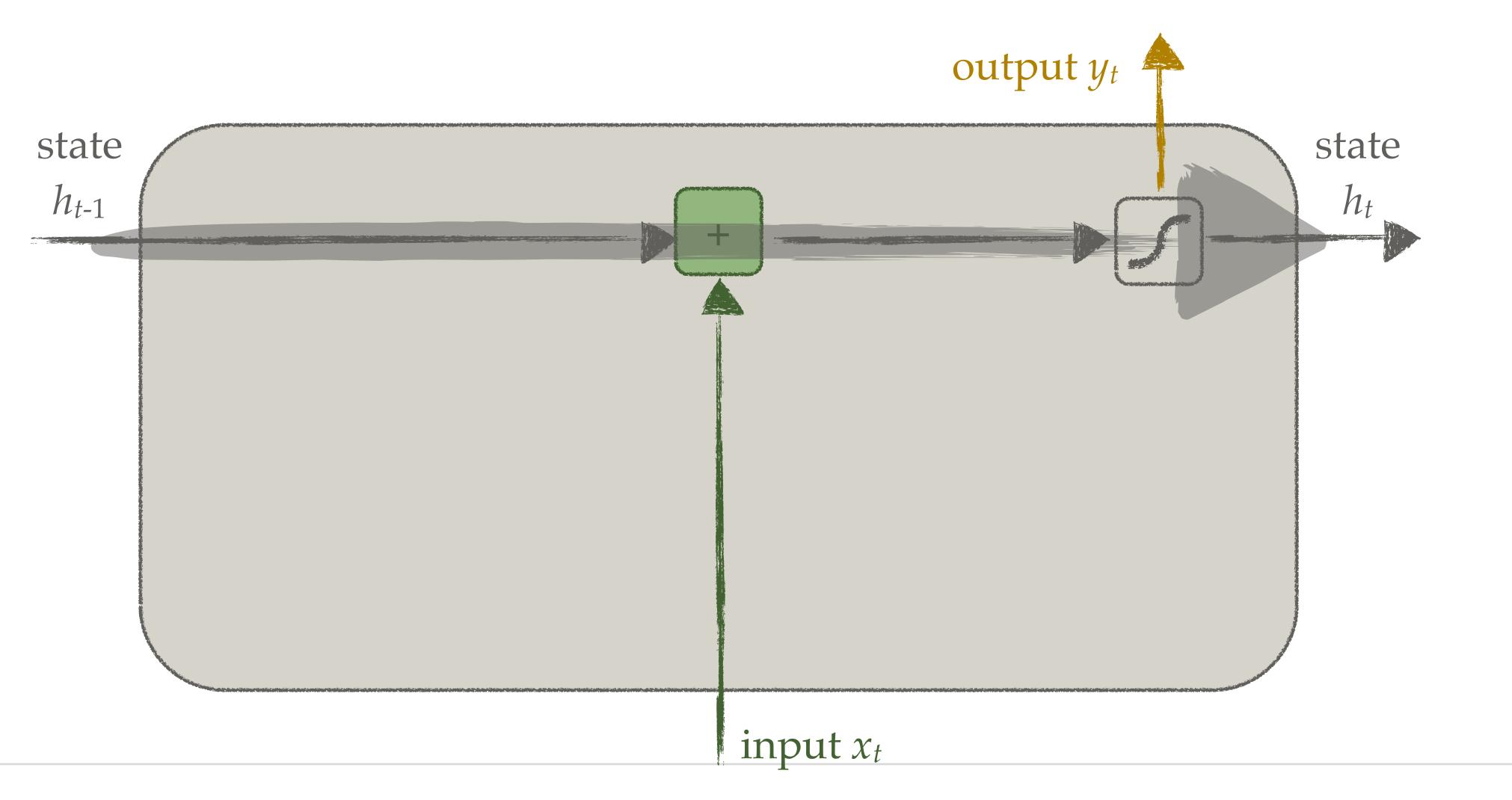
(and *n*-grams cannot retain information beyond *n* steps)



Because of the **non-linearity** in the hidden units, gradients of the error during back-propagation decay **exponentially** with the length of the sequence

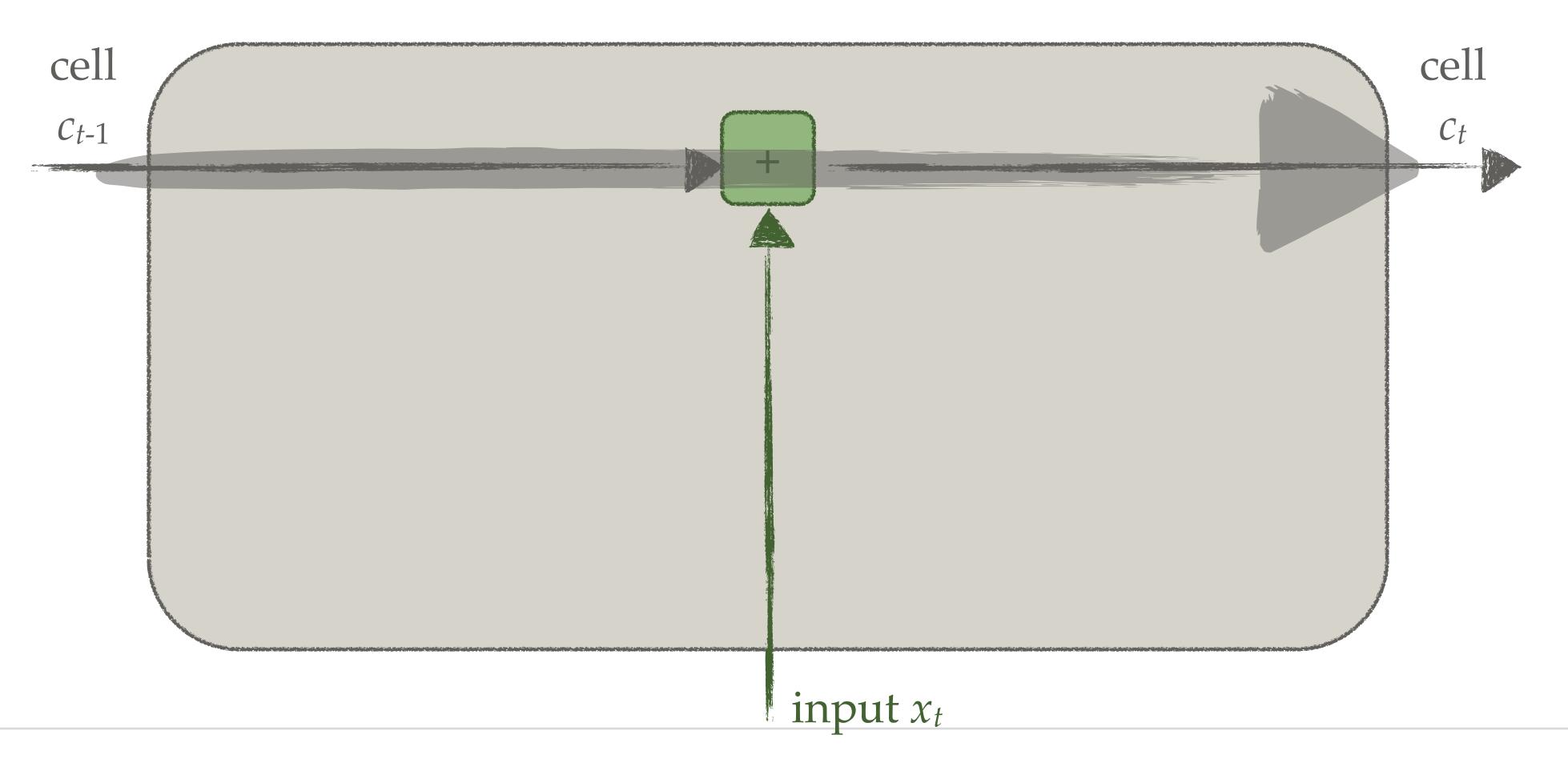
[Sepp Hochreiter (1991) "Untersuchungen zu dynamischen neuronalen Netzen", Diploma TUM; Yoshua Bengio et al. (1994) "Learning Long-Term Dependencies with Gradient Descent is Difficult", IEEE Transactions on Neural Networks]

Recurrent Neural Networks



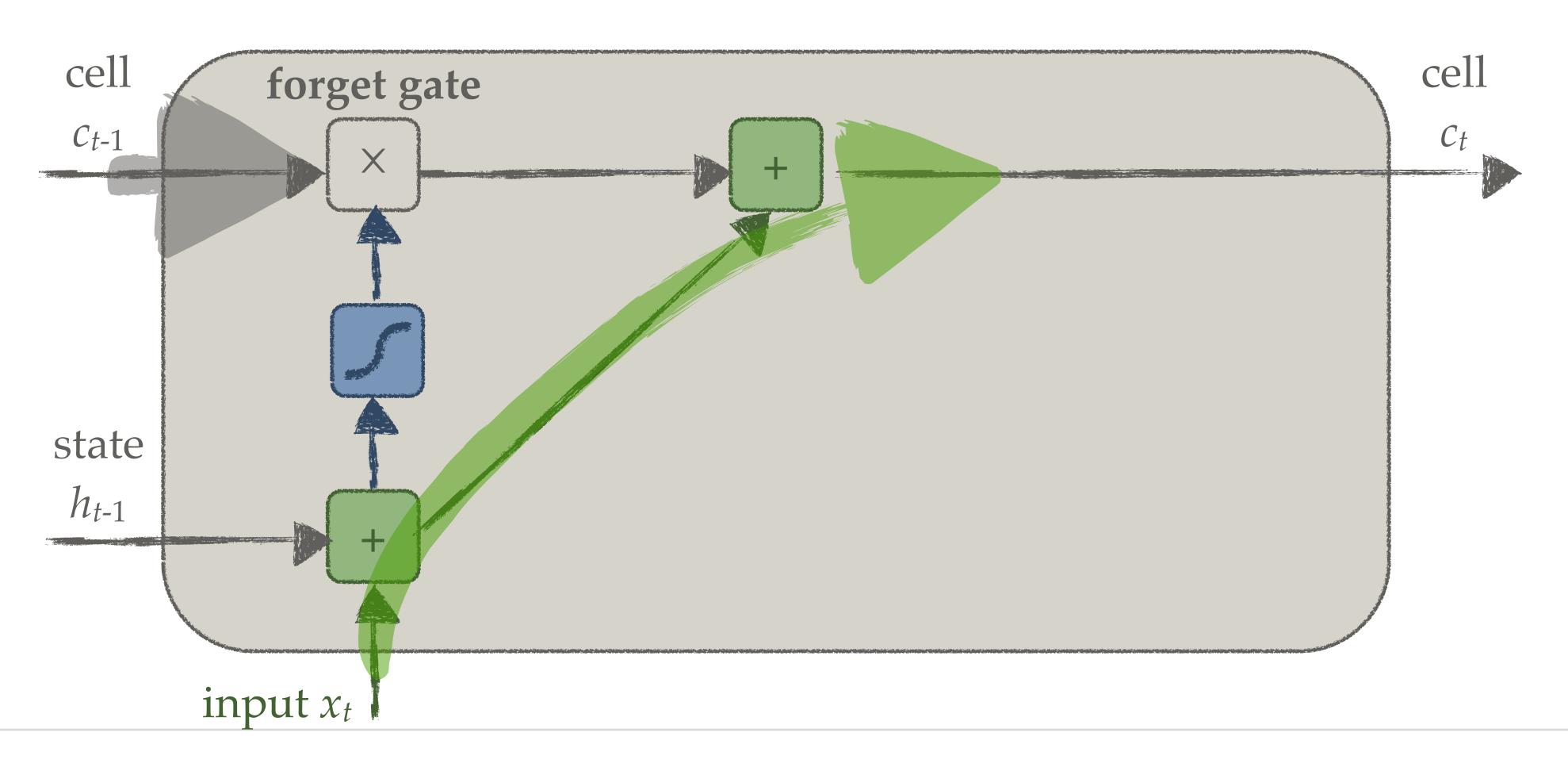
Requirement #1: linear cell

[Sepp Hochreiter and Jürgen Schmidhuber (1997) "Long Short-Term Memory", Neural Computation; Alex Graves (2013a) "Generating sequences with recurrent neural networks", arXiv 1308.0850]

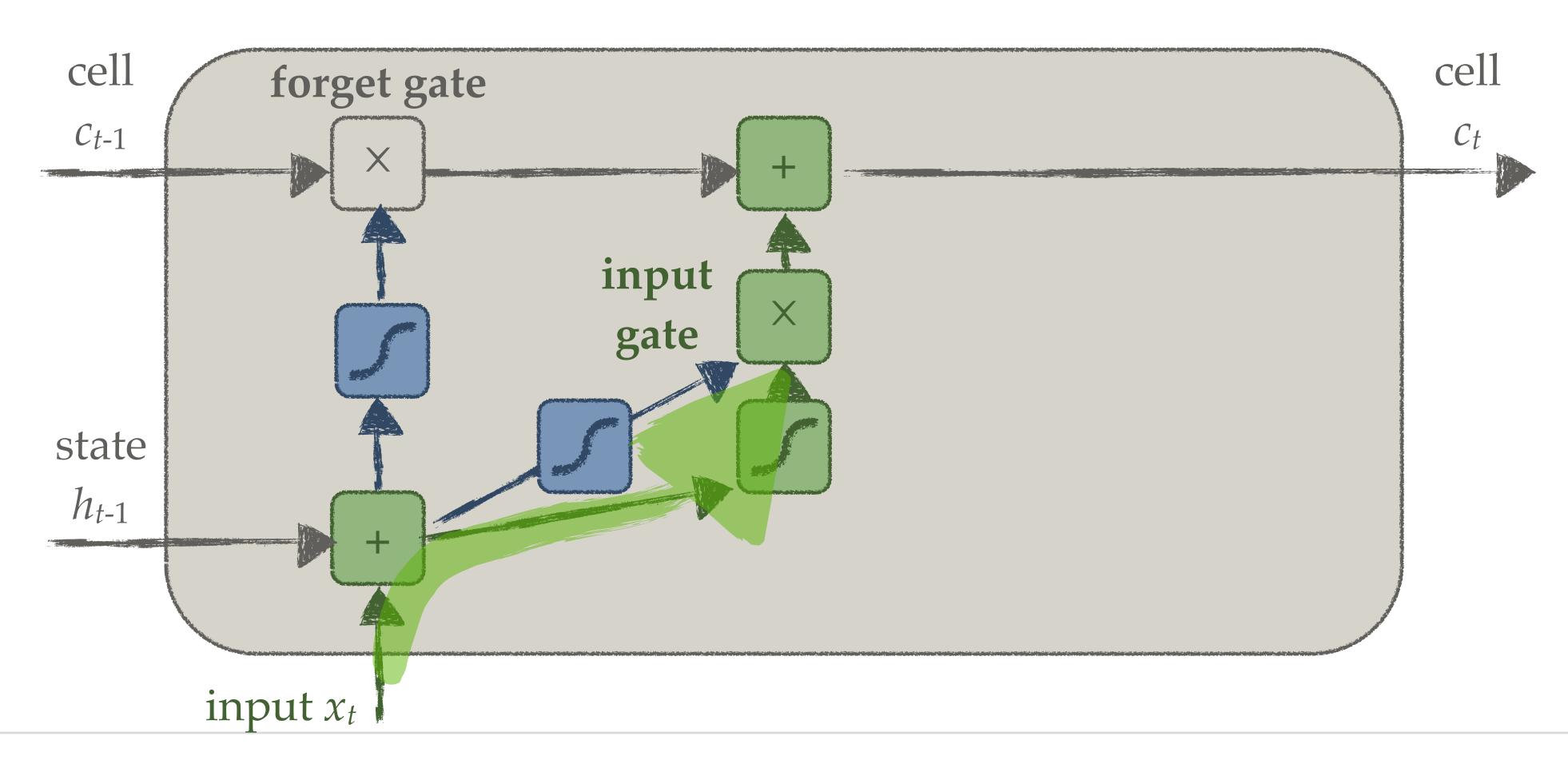


Requirement #2: forget information

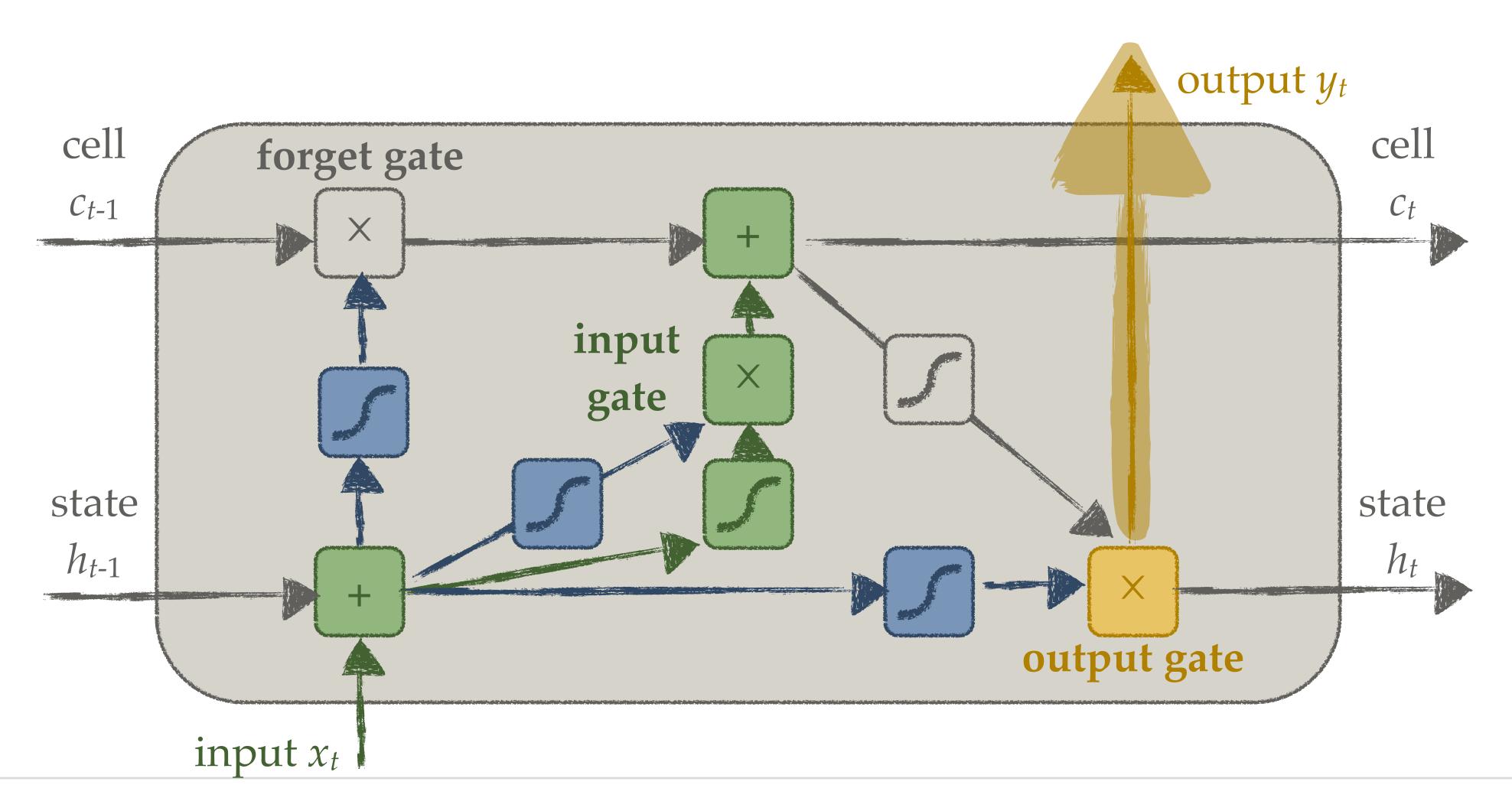
[Sepp Hochreiter and Jürgen Schmidhuber (1997) "Long Short-Term Memory", Neural Computation; Alex Graves (2013a) "Generating sequences with recurrent neural networks", arXiv 1308.0850]



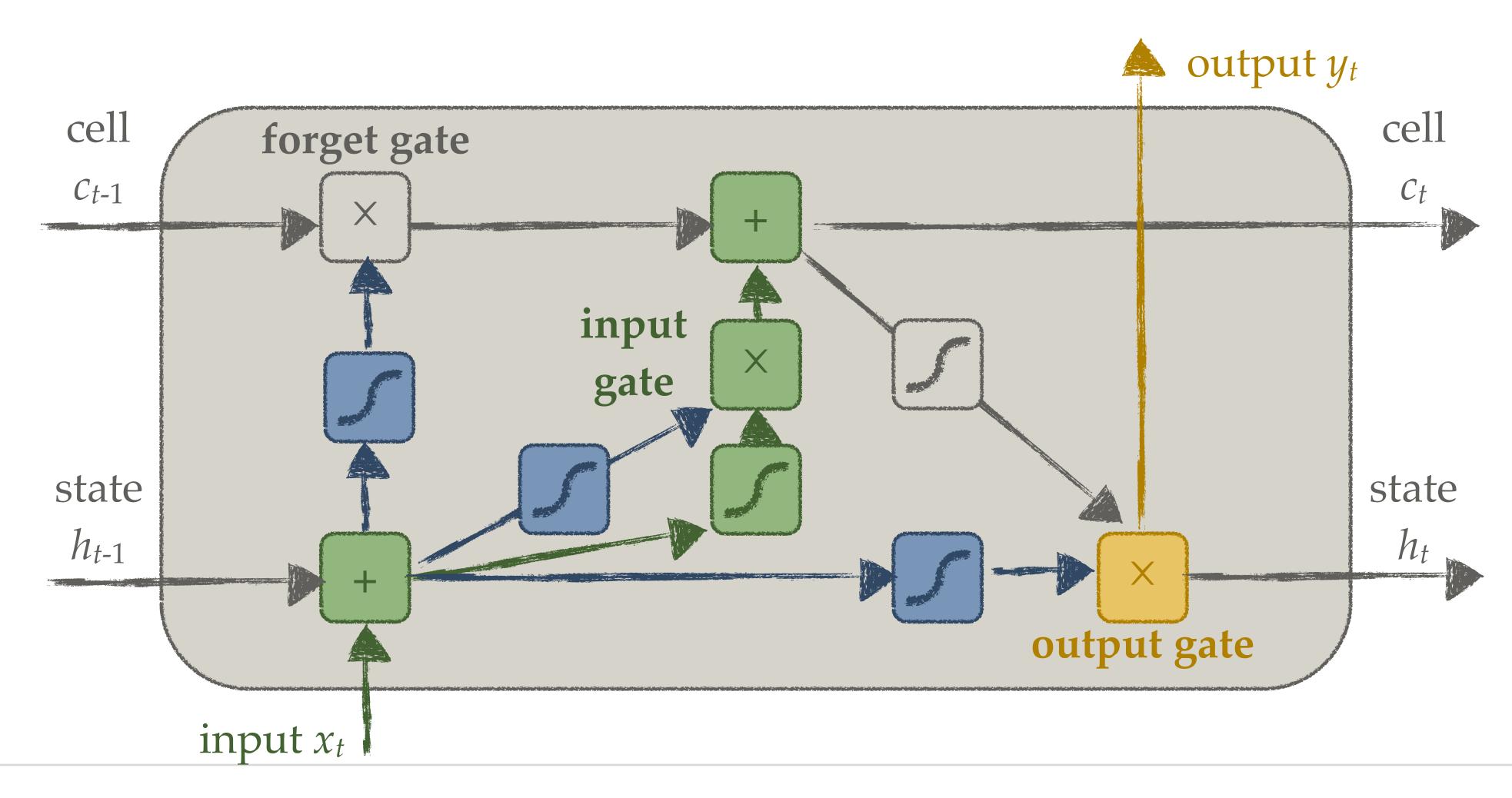
Requirement #3: ignore inputs



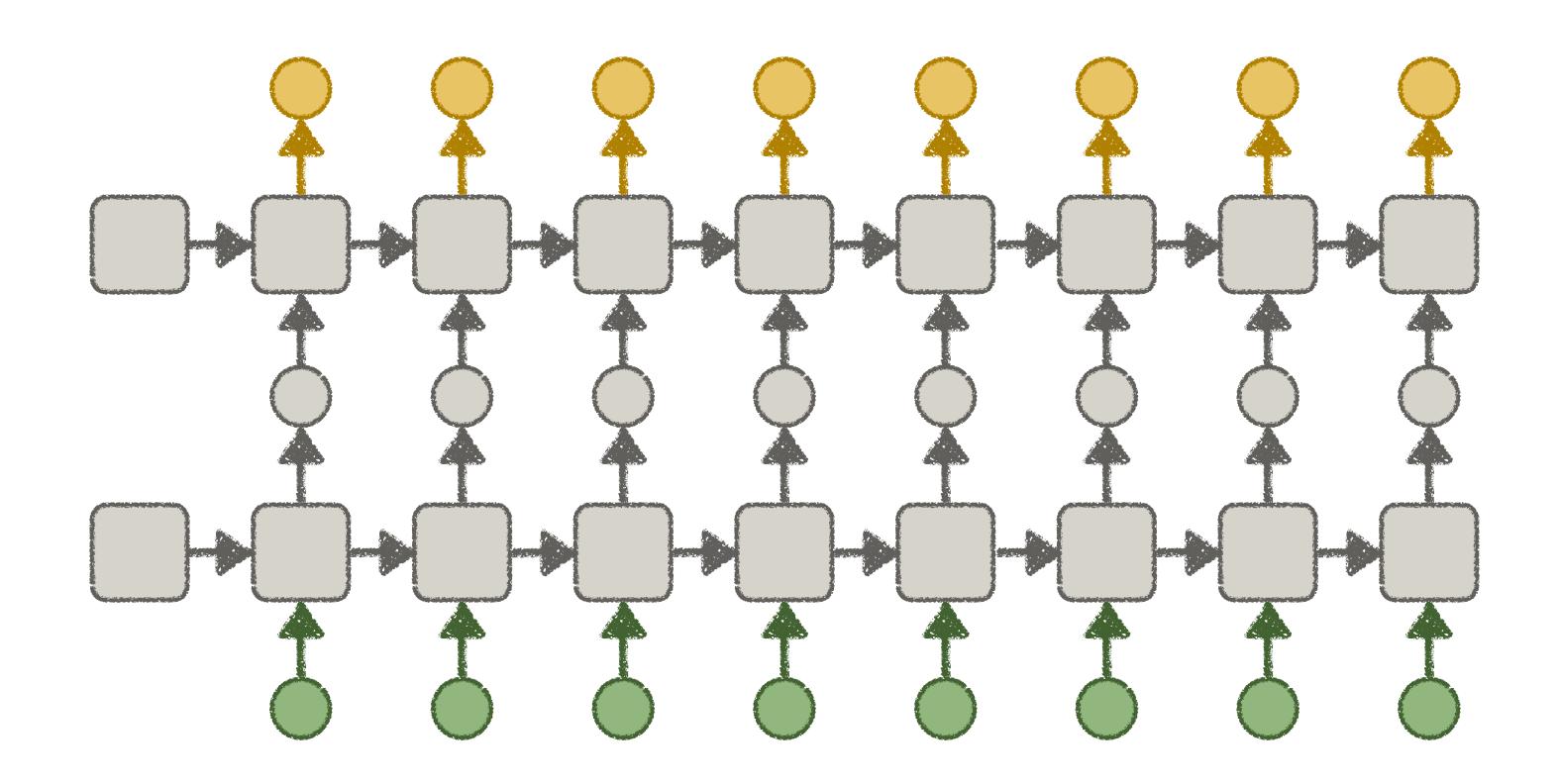
Requirement #4: control outputs



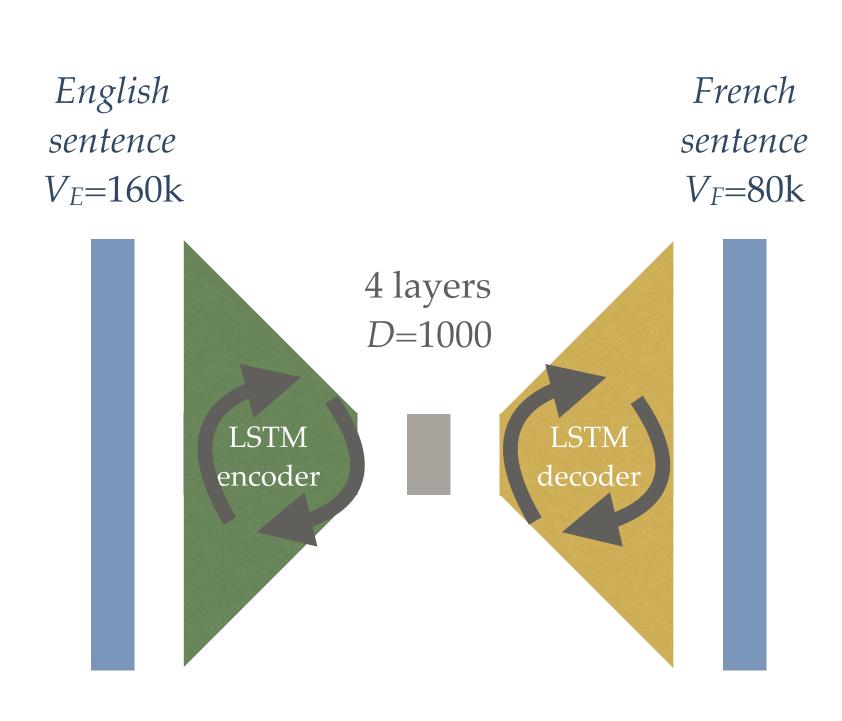
Long Short-Term Memory (LSTM)



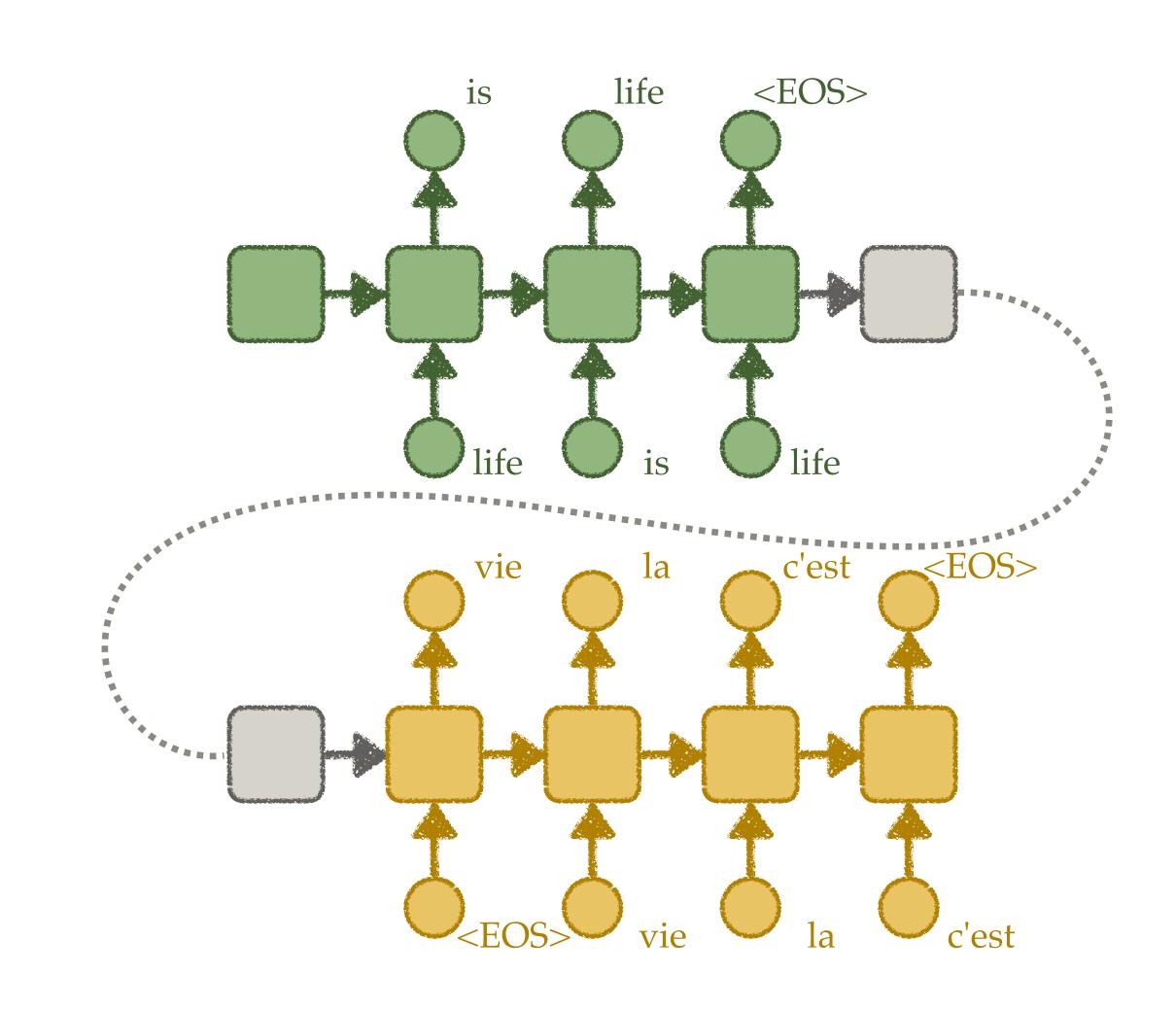
Deep LSTMs: stacking layers



Sentence-to-sentence machine translation



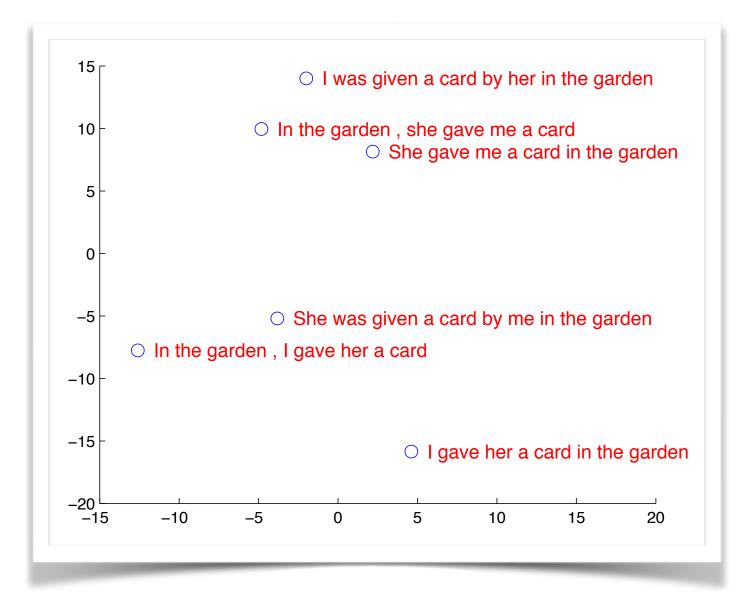
[Sutskever et al. (2014) "Sequence to sequence learning with neural networks", NIPS]

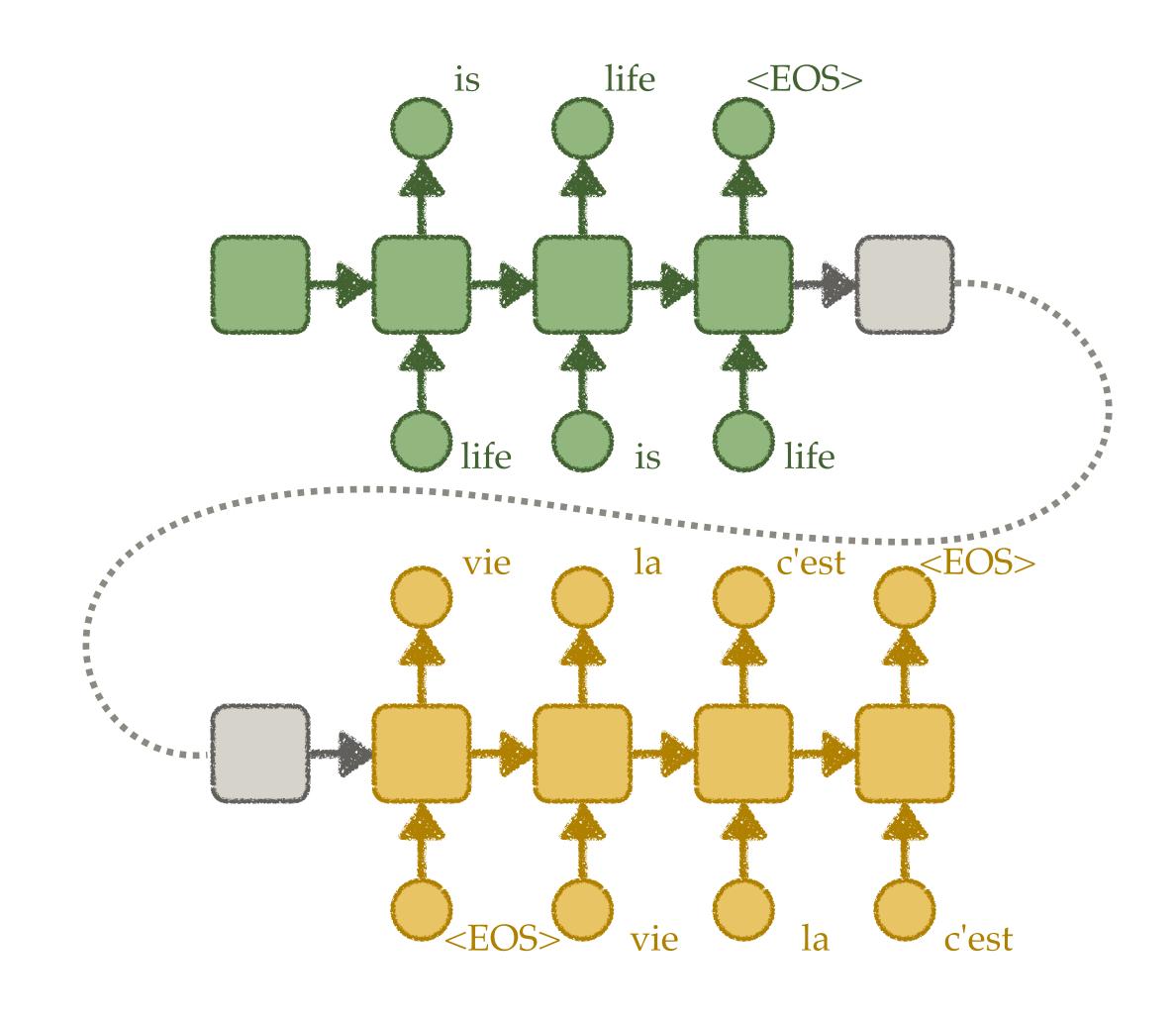


Sentence-to-sentence machine translation

"Les téléphones cellulaires, qui sont vraiment une question, non seulement parce qu' ils pourraient potentiellement causer des interférences avec les appareils de navigation, mais nous savons, selon la FCC, qu' ils pourraient interférer avec les tours de téléphone cellulaire lorsq' ils sont dans l' air ", dit <UNK>.

"Les téléphones portables sont véritablement un problème , non seulement parce qu' ils pourraient éventuellement créer des interférences avec les instruments de navigation , mais parce que nous savons , d' après la FCC , qu' ils pourraient perturber les antennes-relais de téléphonie mobile s' ils sont utilisés à bord " , a déclaré Rosenker .





Character-based text generation

Wikipedia English (2006)

Train on 96MB of text

Vocabulary: V=205 (one-byte characters)

7-layer LSTM, each layer with 700 hiddens

```
[http://www.sibeo.org/netspace/stainteology.htm The design of thinker Wikipedia
server-routed website
*[http://balear.burned.edu/books/1978/tap/trpio.cs/cafa/c249ca.html Nation-state
Player on the /1.3]
{{Linux}}
[[Category:Italo Succeeded bystables | General]]
[[Category:Italo-Saxon singers]]
[[Category:Aviation]]
[[de:Italo]]
[[es:Geotnia slago]]
[[ja:桛娱尔杏の洳]]
[[ko:혐슸불즷엉 유일]]
[[nl:Rodenbaueri]]
[[pl:Main Ages]]
[[pt:Ibanez Heights]]
[[ru:Млкракян • елол Эуциянсьния агморелиа]]
[[simple:International Maritime Commission]]
[[sk:ICBM]]
[[su:Ol aal Mitnet]]
[[fi:Italo Colombonasto Warko]]
[[sv:Opin den mail-climbere panczeur]]
       ]]</text>
     </revision>
  </page>
     <title>Italo-II article</title>
     <id>14848</id>
     <revision>
        <id>15912447</id>
        <timestamp>2004-11-19T19:47:39Z/timestamp>
        <contributor>
           <username>El andres</username>
          <id>509991</id>
        </contributor>
        <minor />
        <comment>disambiguation from [[List of ISBN]] newsletters, see [[ISO site]]/comment>
        <text xml:space="preserve">#REDIRECT [[Quartic war]]</text>
     </revision>
   </page>
   <page>
     <title>ICSM</title>
     <id>14939</id>
     <revision>
        <id>42109942</id>
        <timestamp>2006-02-28T17:22:02Z</timestamp>
        <contributor>
           <username>Dtelclan</username>
           < id > 26 < /id >
        </contributor>
        <minor />
         <comment>/* Possible catheterman */</comment>
        <text xml:space="preserve">[[Image:Isaac.org/ice.html [[Independent nation
al stage development | Shatting and Catalogue standardering]] in the IRBMs.
Up-2000 they called the SC 4220 system: he was swalloped early in Calvino, or since each trial mentioned
based on [[Balbov's new single-jarget|bit-oriann guess]
```

[Alex Graves (2013) "Generating sequences with RNNs", arXiv]

LSTMs in popular culture

Lyrics generation

[The Guardian, 1 December 2015, "World's first computer-generated musical to debug in London" https://www.theguardian.com/stage/2015/dec/01/beyond-the-fence-computer-generated-musical-greenham-common]

"World's first computer-generated musical to debut in London.

Beyond the Fence, the story of a family in Greenham Common, will incorporate machine-generated plot and music.

[...] But could a computer also generate a hit West End musical? The answer may be provided next year with the announcement of the world's first

computer musical, getting a run at the Arts Theatre [...]"

[Courtesy of Guardian News & Media Ltd.]

Movie script generation

for short movie "Sunspring" by Ross Goodwin

[http://rossgoodwin.com]

Speech recognition

The latest news from Research at Google

[Google Research Blog, 11 August 2015, http://googleresearch.blogspot.co.uk/2015/08/the-neural-networks-behind-google-voice.html]

The neural networks behind Google Voice transcription

Tuesday, August 11, 2015

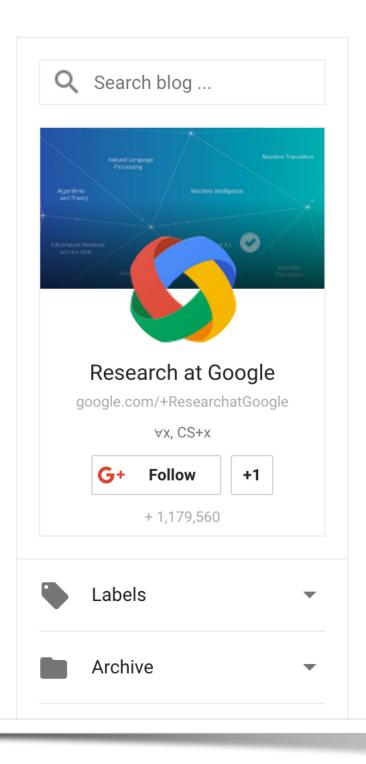
Posted by Françoise Beaufays, Research Scientist

Over the past several years, deep learning has shown remarkable success on some of the world's most difficult computer science challenges, from image classification and captioning to translation to model visualization techniques. Recently we announced improvements to Google Voice transcription using Long Short-term Memory Recurrent Neural Networks (LSTM RNNs)—yet another place neural networks are improving useful services. We thought we'd give a little more detail on how we did this.

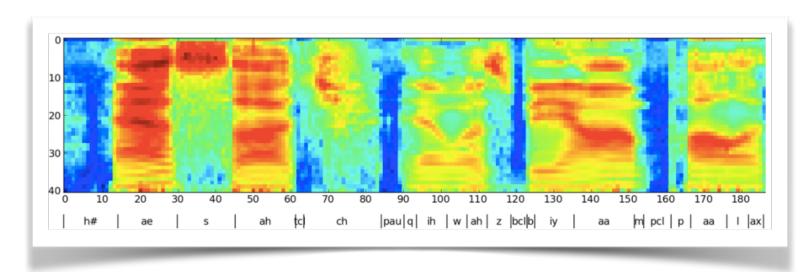
Since it launched in 2009, Google Voice transcription had used Gaussian Mixture Model (GMM) acoustic models, the state of the art in speech recognition for 30+ years. Sophisticated techniques like adapting the models to the speaker's voice augmented this relatively simple modeling method.

Then around 2012, Deep Neural Networks (DNNs) revolutionized the field of speech recognition. These multi-layer networks distinguish sounds better than GMMs by using "discriminative training," differentiating phonetic units instead of modeling each one independently.

But things really improved rapidly with Recurrent Neural Networks (RNNs), and especially LSTM RNNs, first launched in Android's speech recognizer in May 2012. Compared to DNNs, LSTM RNNs have additional recurrent connections and memory cells that allow them to "remember" the data they've seen so far—much as you interpret the words you hear based on previous words in a sentence.



Starting from acoustic vectors...



[Graves et al. (2013b) "Speech recognition with deep recurrent neural networks", *ICASSP*]

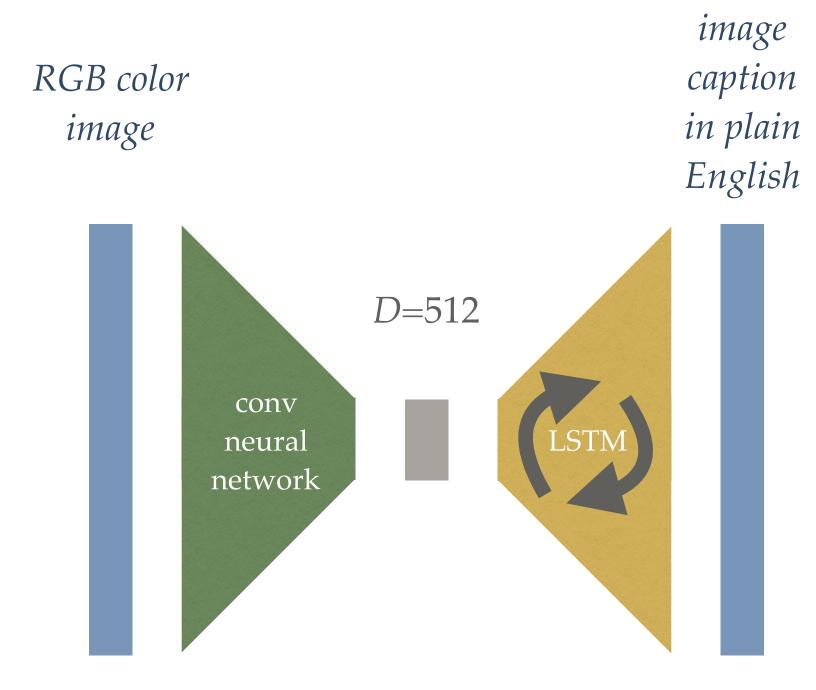
... choose the "most likely" sentence

the american popular culture americans popular culture american popular culture the nerds in popular culture mayor kind popular culture near can popular culture the mere kind popular culture

• • •

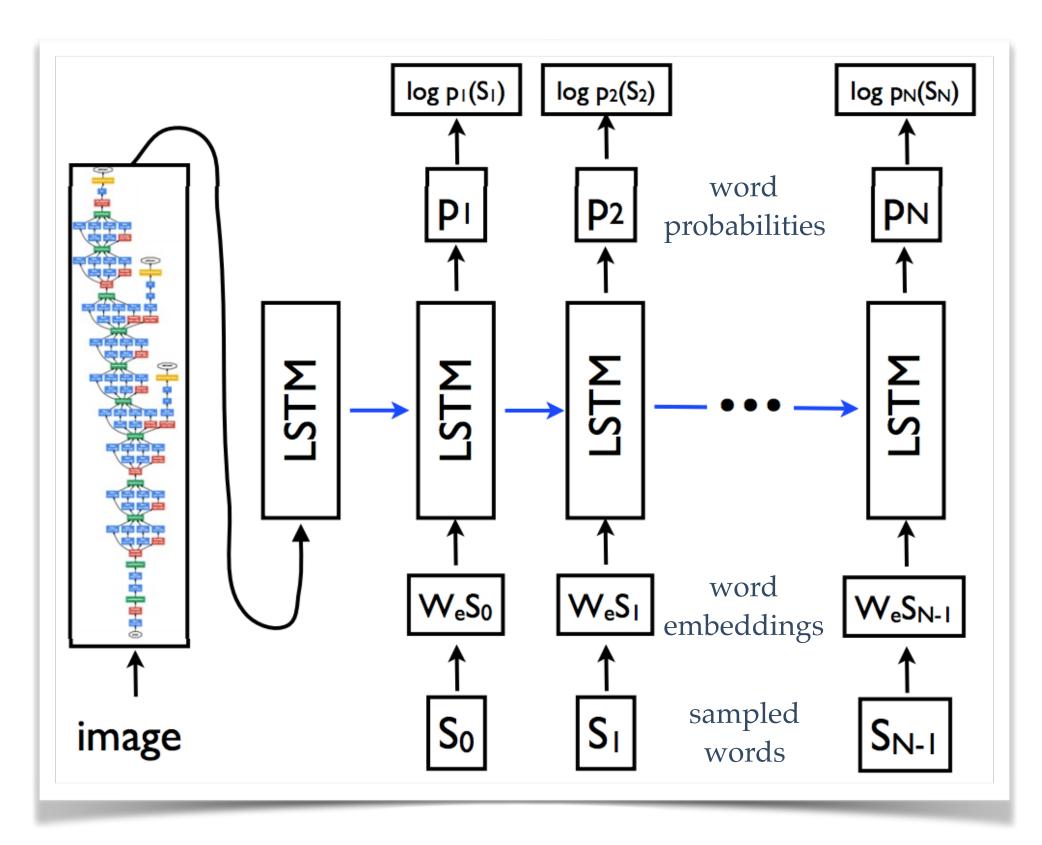
Image captioning

[Vinyals et al. (2014) "Show and Tell: Neural Image Caption Generation"; Karpathy et al. (2014) "Deep Visual-Semantic Alignments for Generating Image Descriptions"; Kiros et al. (2014) "Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models"]



convolutional network pre-trained on 2.5M ImageNet images

end-to-end system trained on 100k to 1M image - caption pairs



[Image credits: Vinyals et al. (2014) "Show and Tell: Neural Image Caption Generation"

Image captioning

[Vinyals et al. (2014) "Show and Tell: Neural Image Caption Generation"; Karpathy et al. (2014) "Deep Visual-Semantic Alignments for Generating Image Descriptions"; Kiros et al. (2014) "Unifying Visual-Semantic Embeddings with Multimodal Neural Language Models"]

How? (what this talk will cover)

Fixed-memory language models

n-grams and Markov chains

Learning representations

Word embeddings

Maximum likelihood learning

Neural language models

Recurrent Neural Networks (RNNs)

Long Short-Term Memory RNNs

Attention and memory models

Control through Reinforcement Learning

Language modeling

Sentence completion

Machine translation

Text generation

Speech recognition

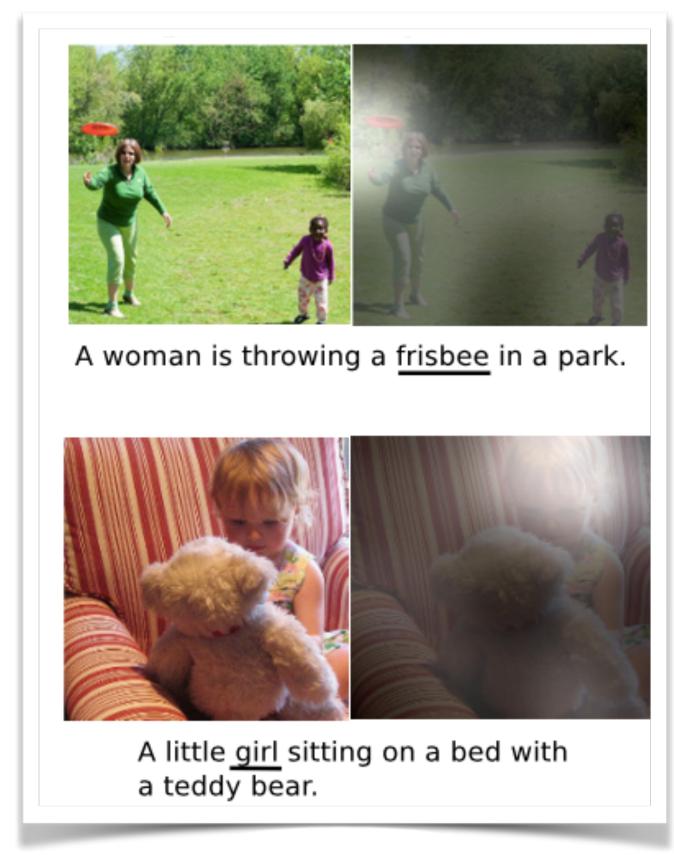
Image captioning

Query answering

Playing 3D games

Learning to navigate

Content-based attention



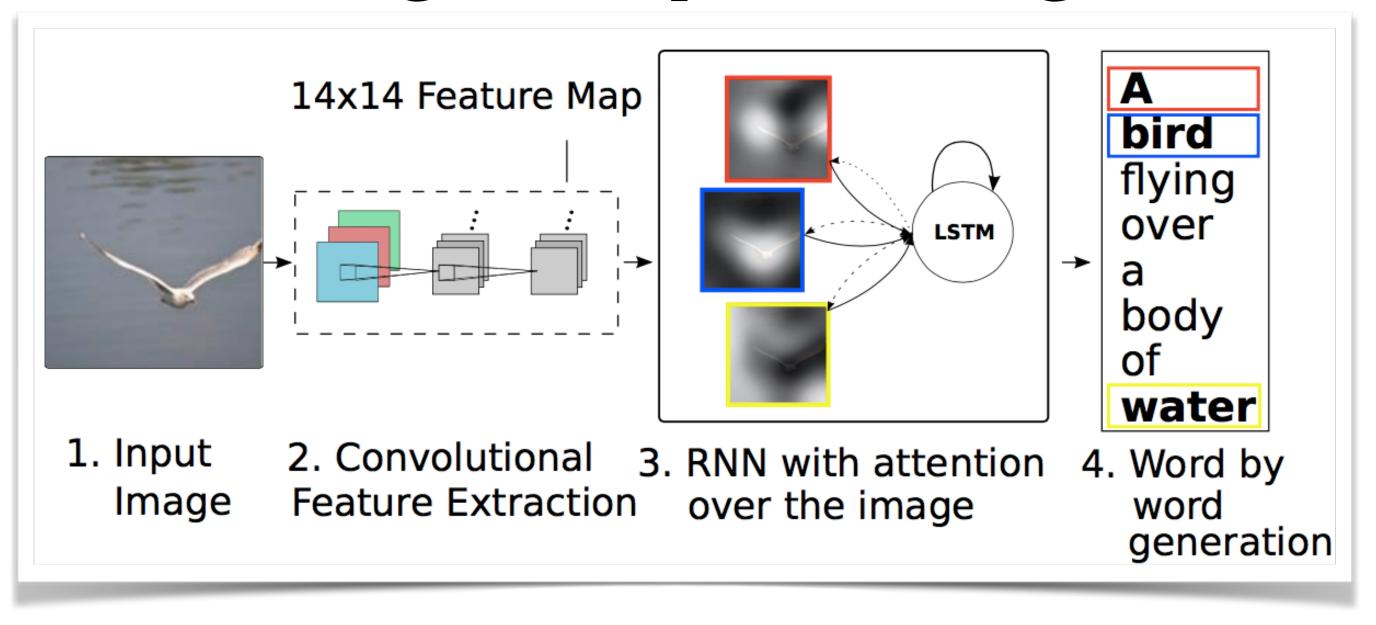
[Kelvin Xu et al. (2015)
"Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", *ICML*]

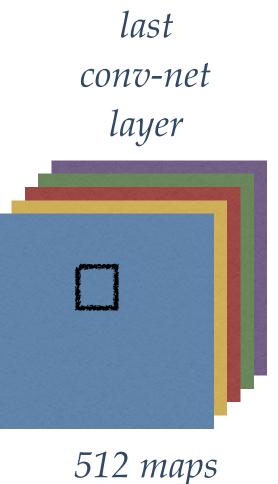
by ent423, ent261 correspondent updated 9:49 pm et, thu march 19,2015 (ent261) a ent114 was killed in a parachute accident in ent45, ent85, near ent312, a ent119 official told ent261 on wednesday. he was identified thursday as special warfare operator 3rd class ent23,29, of ent187, ent265. "ent23 distinguished himself consistently throughout his career. he was the epitome of the quiet professional in all facets of his life, and he leaves an inspiring legacy of natural tenacity and focused

ent119 identifies deceased sailor as **X**, who leaves behind a wife

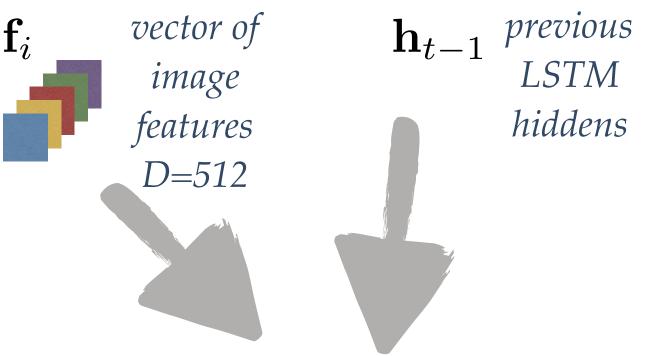
[Karl M Hermann et al. (2015) "Teaching Machines to Read and to Comprehend", NIPS]

Image captioning with visual attention





512 maps of size 14x14



$$s_{i,t} = f_{att}(\mathbf{f}_i, \mathbf{h}_{t-1})$$
 attention score

$$\alpha_{i,t} = \frac{e^{s,t}}{\sum_{k} e^{s_{k,t}}}$$

attention distribution

 $\mathbf{z}_t = \sum_i \alpha_{i,t} \mathbf{f}_i$ soft attention mechanism

[Kelvin Xu et al. (2015) "Show, Attend and Tell: Neural Image Caption Generation with Visual Attention", *ICML*]

A woman is throwing a <u>frisbee</u> in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

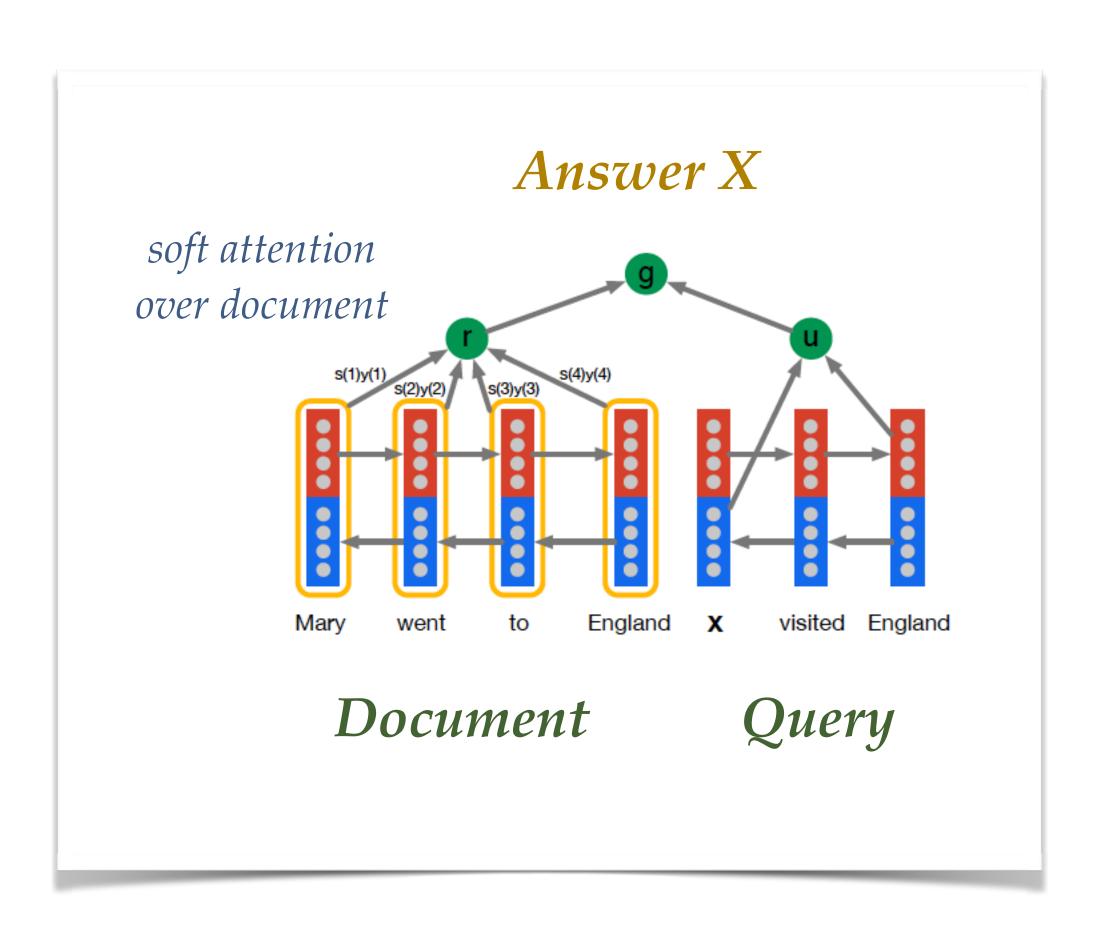
Query answering with attention over context

Document

by ent423, ent261 correspondent updated 9:49 pm et, thu march 19,2015 (ent261) a ent114 was killed in a parachute accident in ent45, ent85, near ent312, a ent119 official told ent261 on wednesday. he was identified thursday as special warfare operator 3rd class ent23,29, of ent187, ent265. ``ent23 distinguished himself consistently throughout his career. he was the epitome of the quiet professional in all facets of his life, and he leaves an inspiring legacy of natural tenacity and focused

Query

ent 119 identifies deceased sailor as ${f X}$, who leaves behind a wife ${\color{blue}Answer}\,{f X}$



How? (what this talk will cover)

Fixed-memory language models

n-grams and Markov chains

Learning representations

Word embeddings

Maximum likelihood learning

Neural language models

Recurrent Neural Networks (RNNs)

Long Short-Term Memory RNNs

Attention and memory models

Control through Reinforcement Learning

Language modeling

Sentence completion

Machine translation

Text generation

Speech recognition

Image captioning

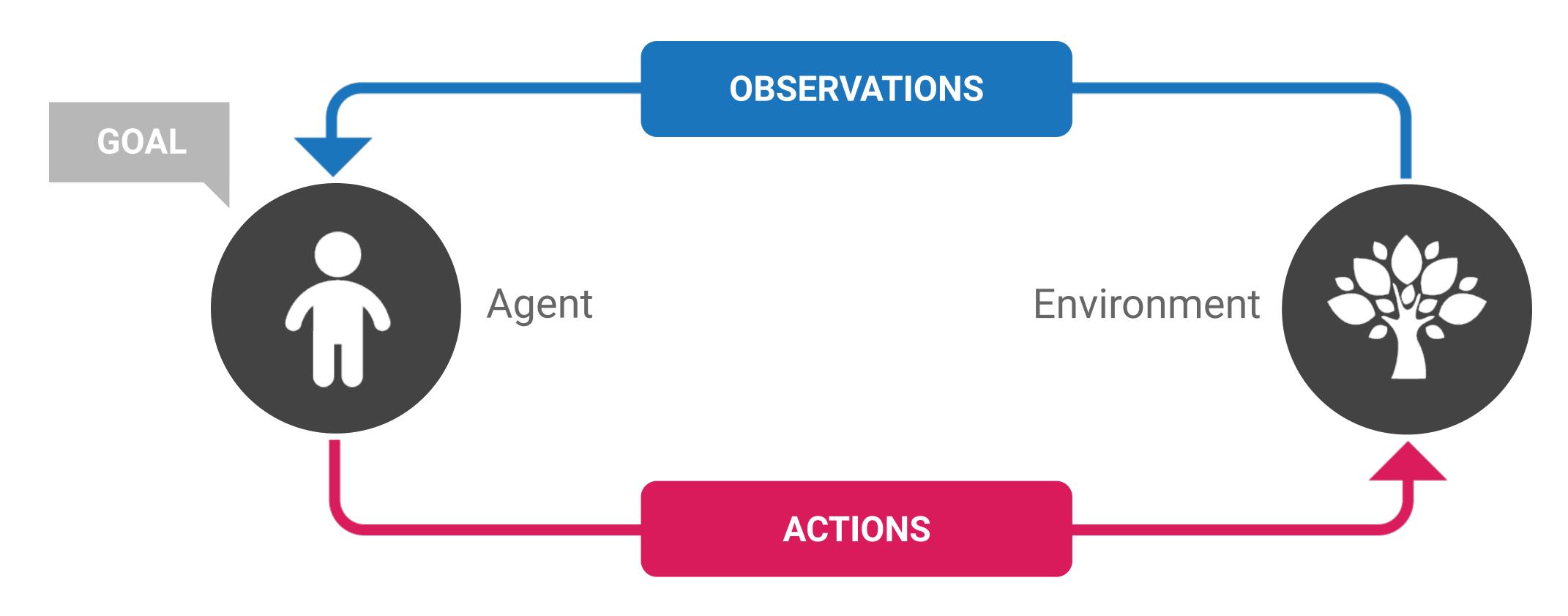
Query answering

Playing 3D games

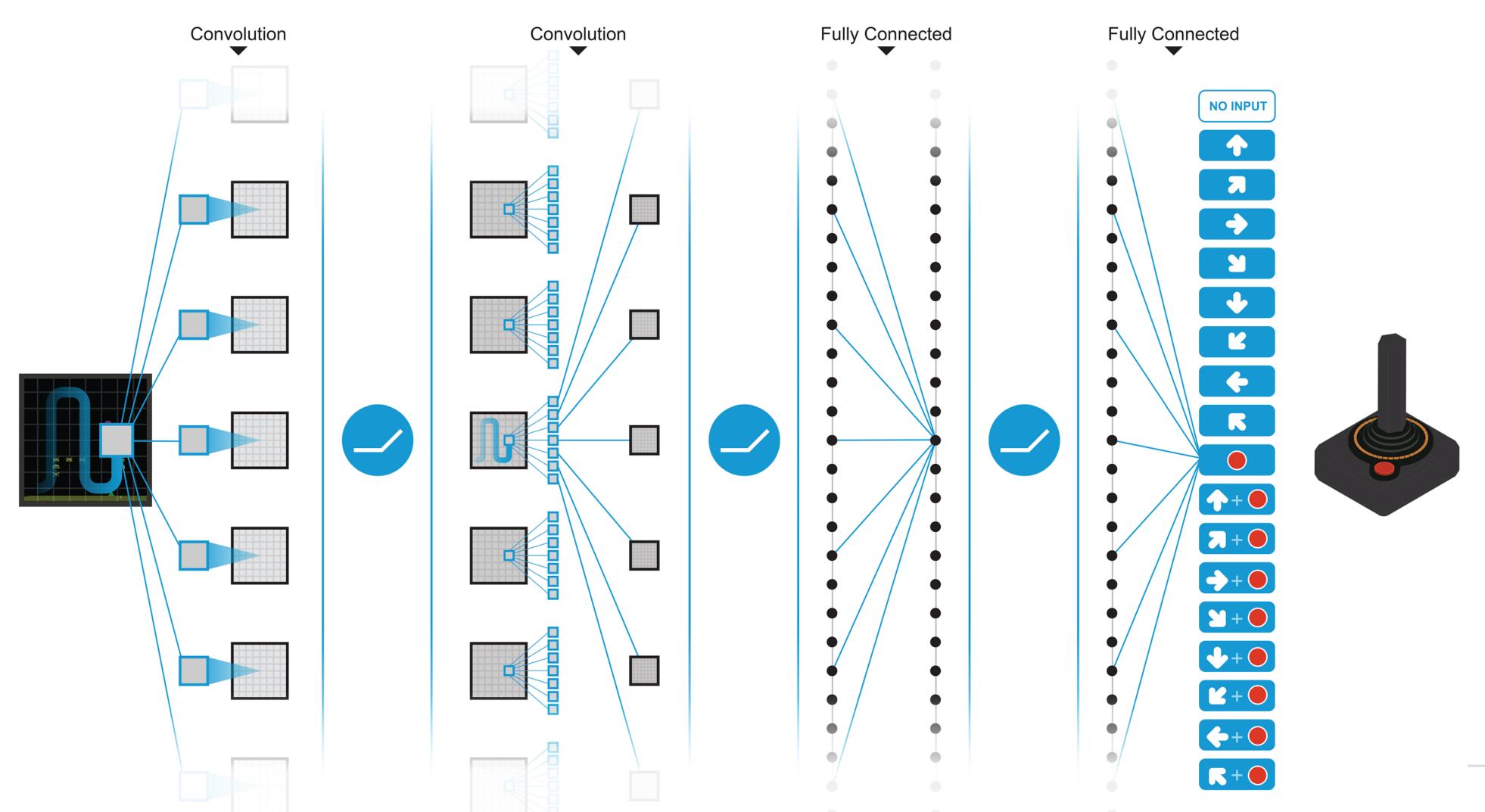
Learning to navigate

Reinforcement learning framework

[Mnih, Kavukcuoglu et al. (2015)
"Human-level control through deep
reinforcement learning", Nature;
Silver, Huang et al. (2016)
"Mastering the game of Go with deep
neural networks and tree search",
Nature]

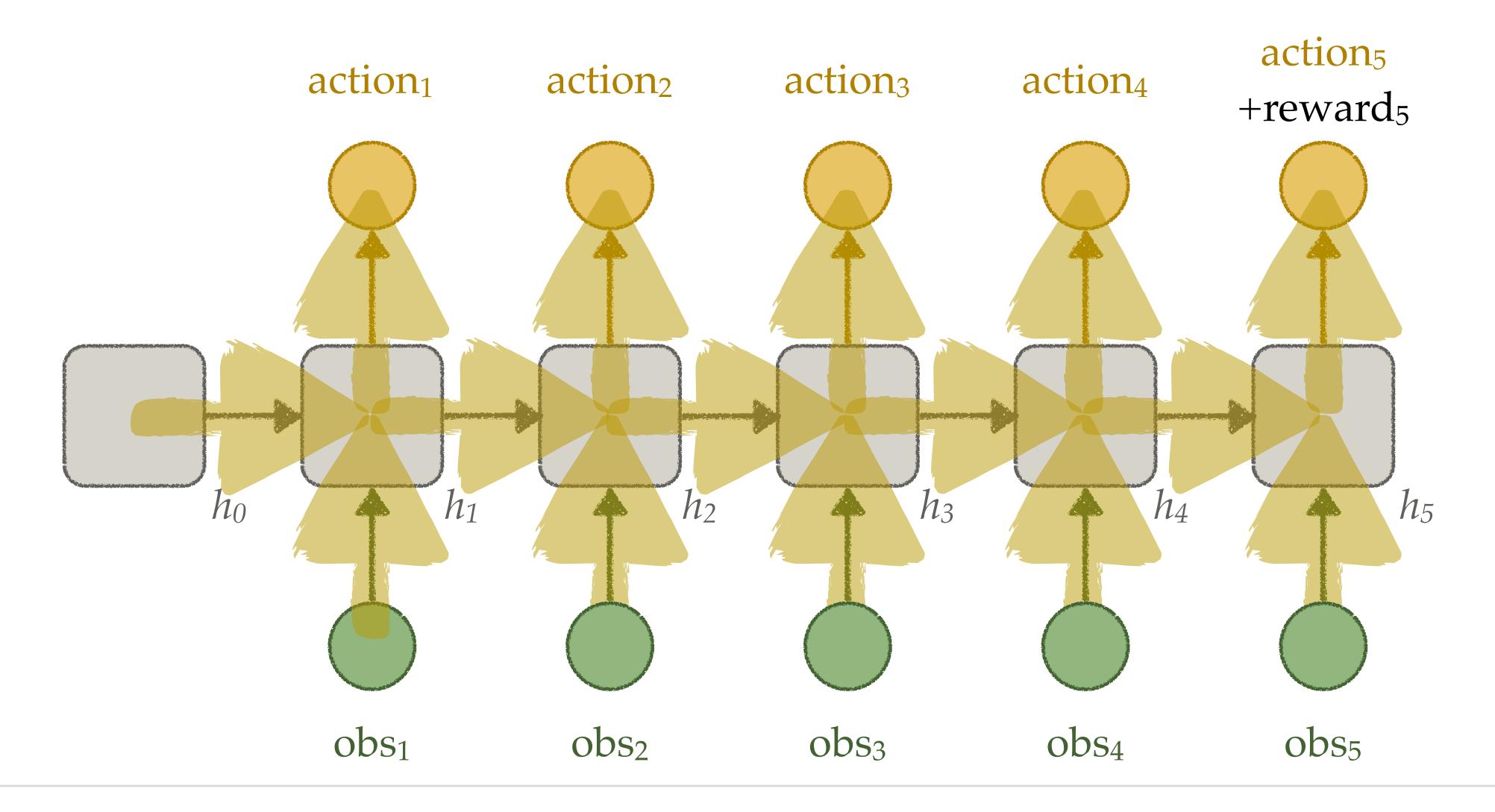


Reinforcement learning with plain convnets

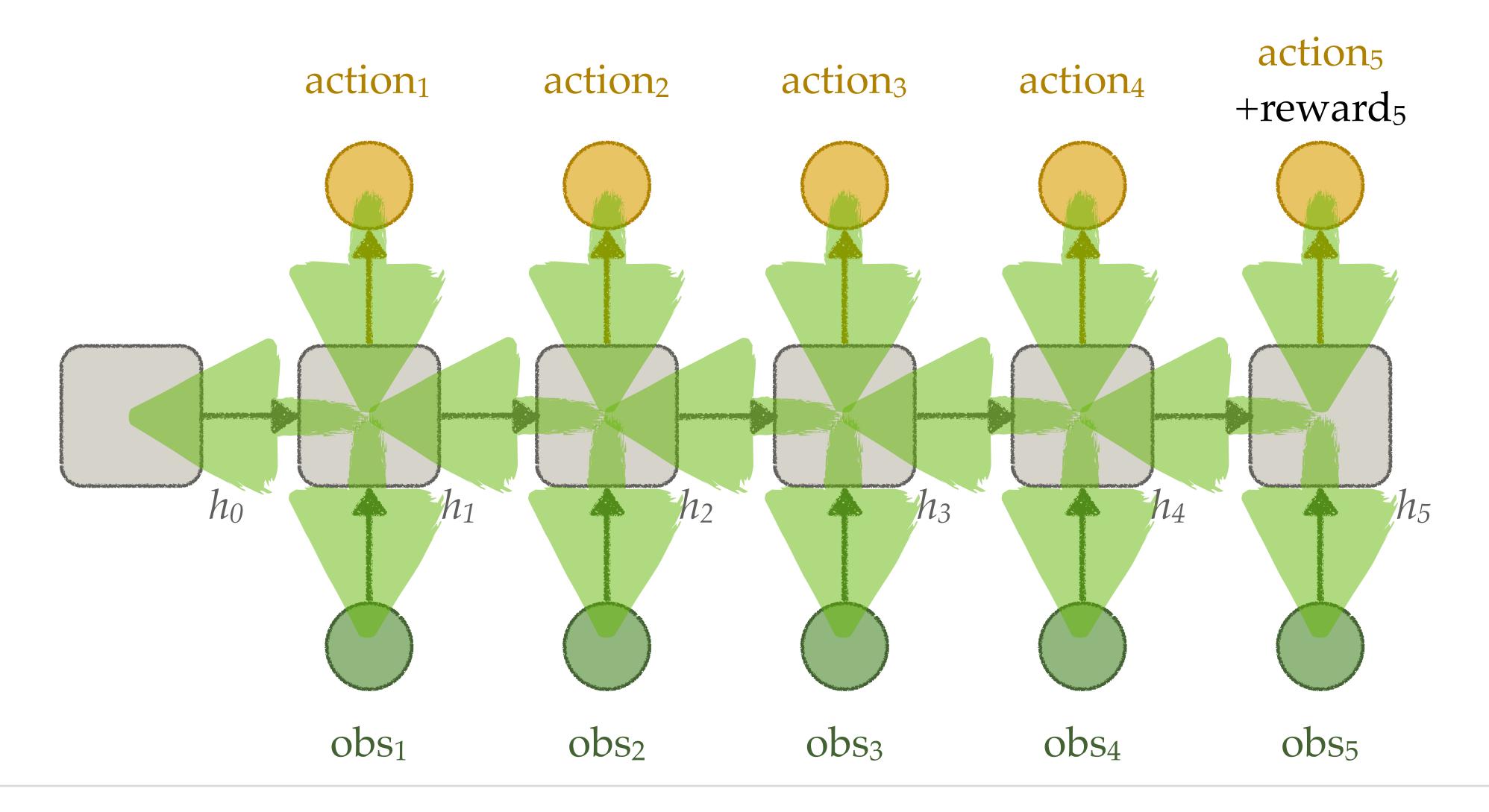


[Mnih, Kavukcuoglu et al. (2015) "Human-level control through deep reinforcement learning", Nature; Silver, Huang et al. (2016) "Mastering the game of Go with deep neural networks and tree search", Nature]

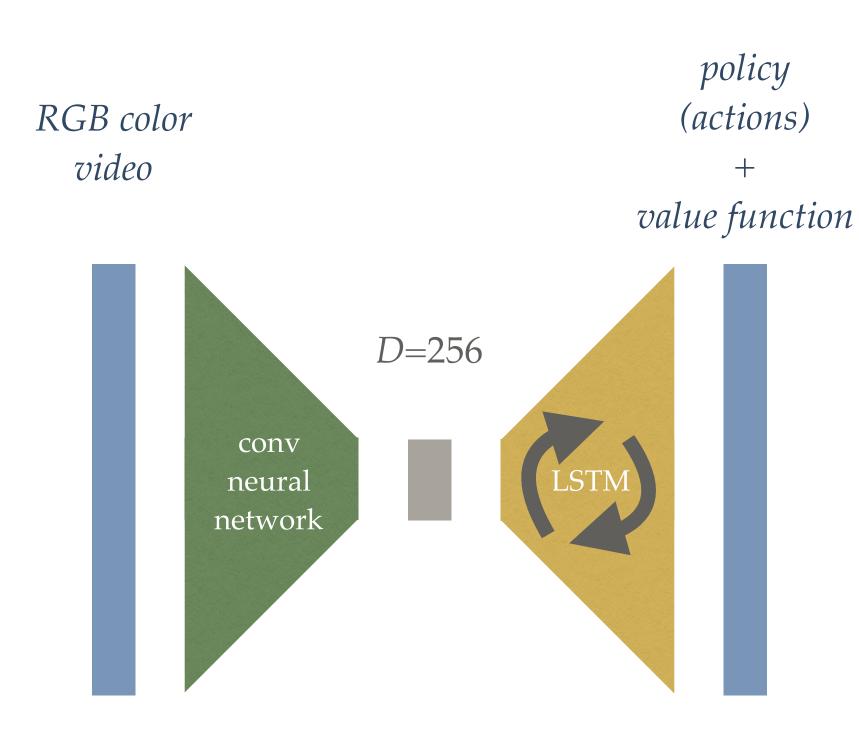
Reinforcement learning with RNNs



Reinforcement learning with RNNs

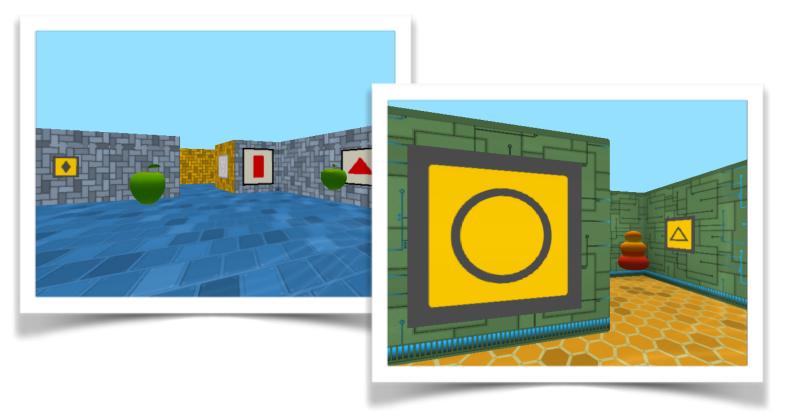


Reinforcement learning of 3D game controllers

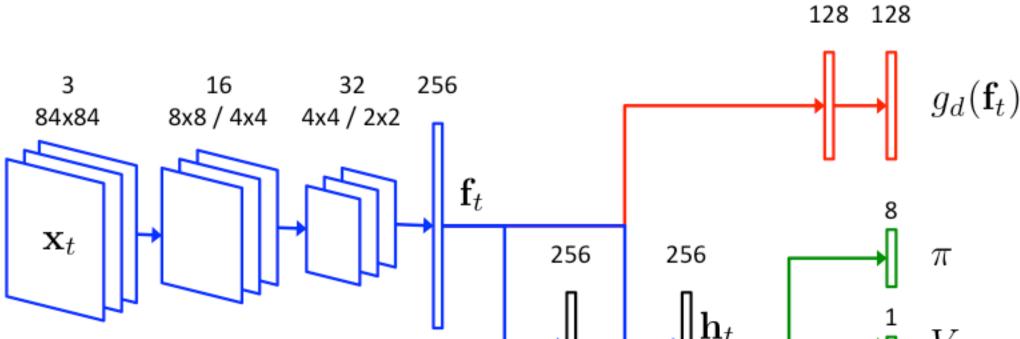


convolutional network + LSTM trained on 120M frames of video game emulator using Reinforcement Learning Asynchronous Advantage Actor-Critic

Learning to navigate in complex environments



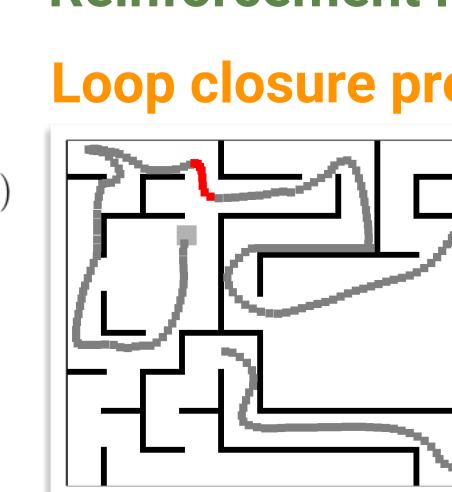
Multi-task learning on multiple input modalities



Depth prediction

Reinforcement learning

Loop closure prediction

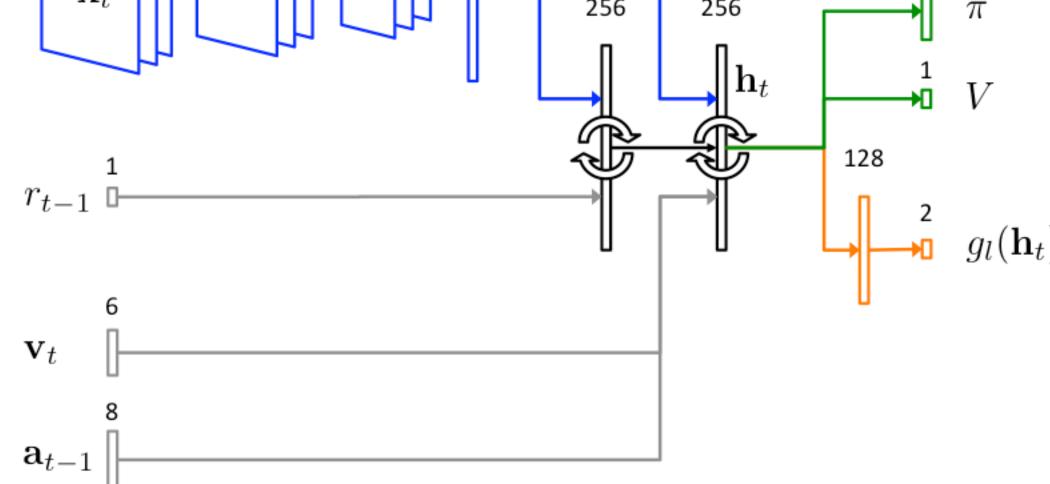


Visual inputs

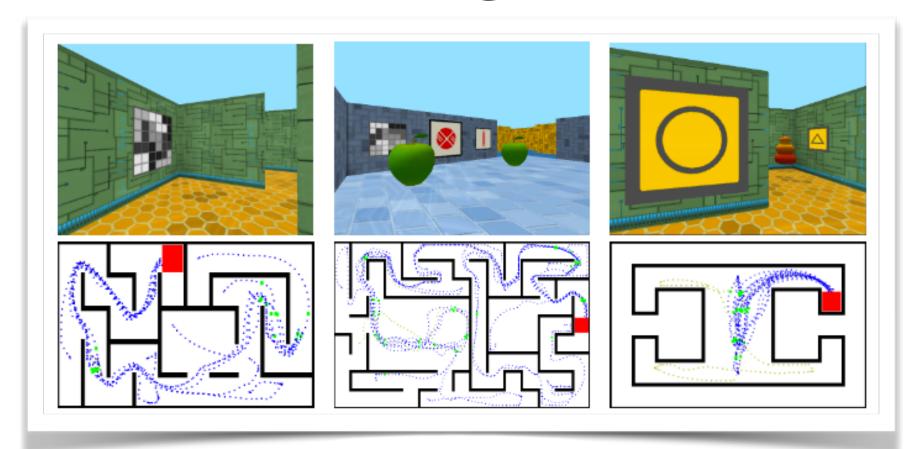
Previous reward

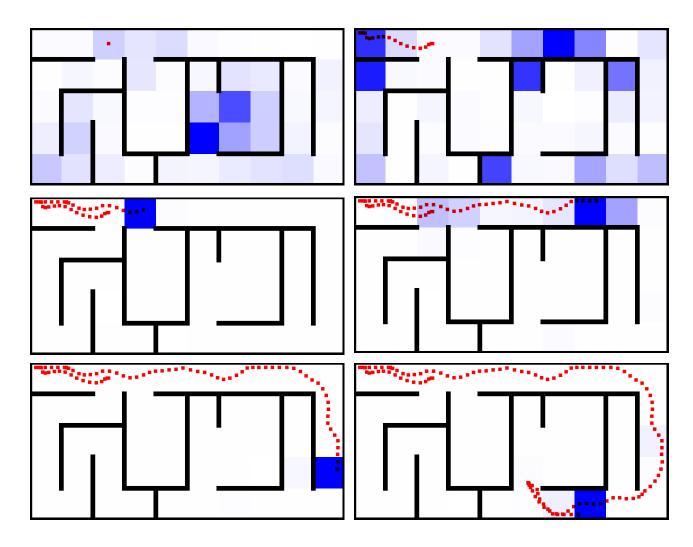
Agent-relative velocity

Previous action



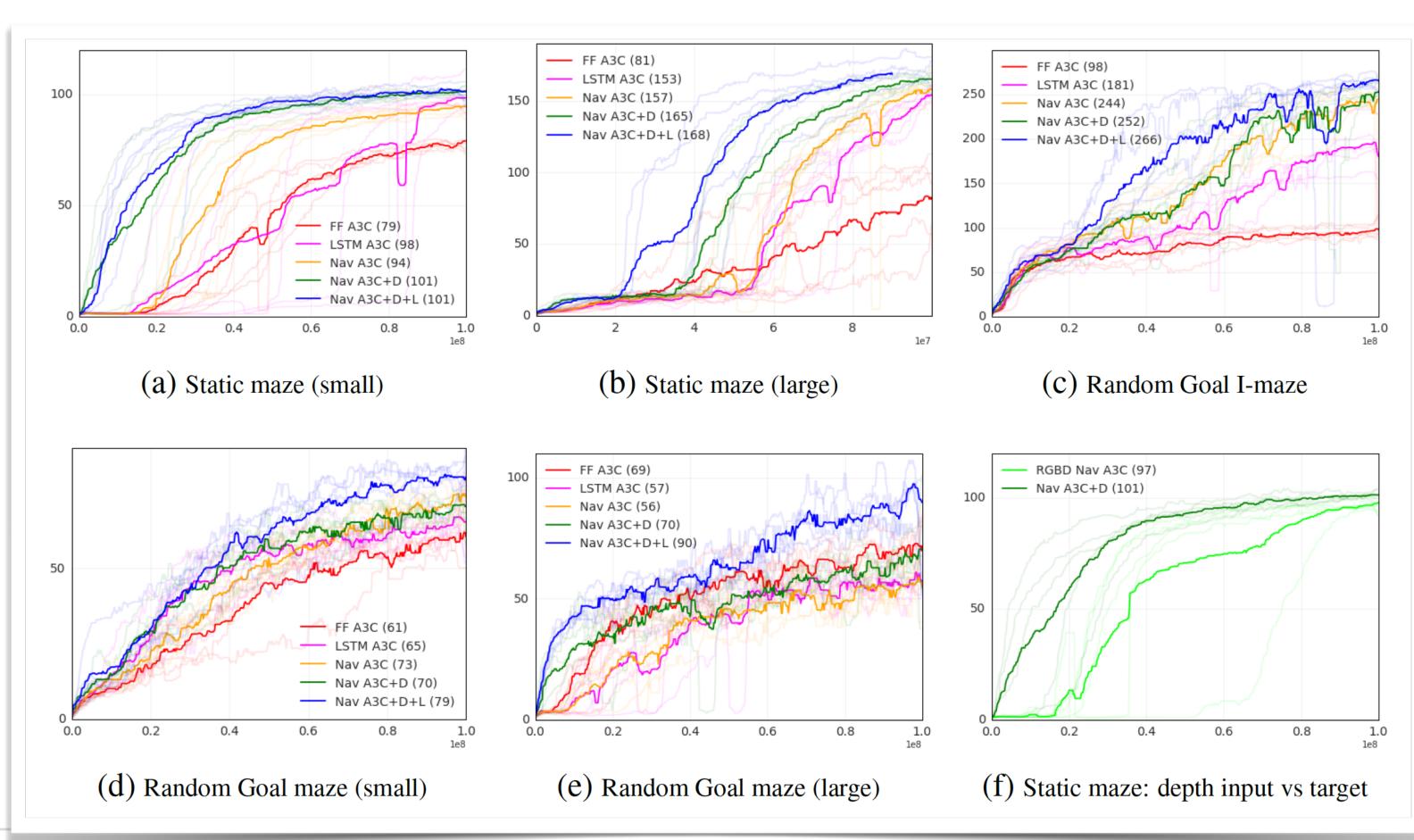
Learning to navigate in complex environments





Position decoding

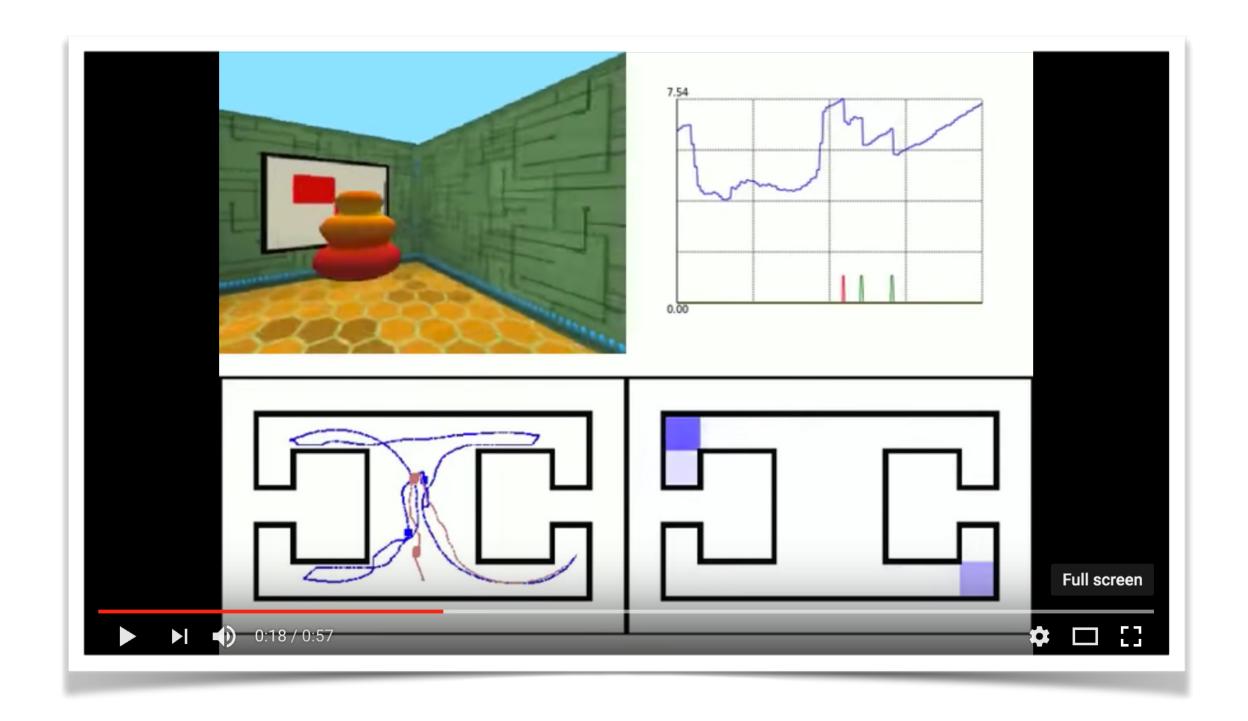
Higher rewards, faster than plain convnet or convnet+LSTM

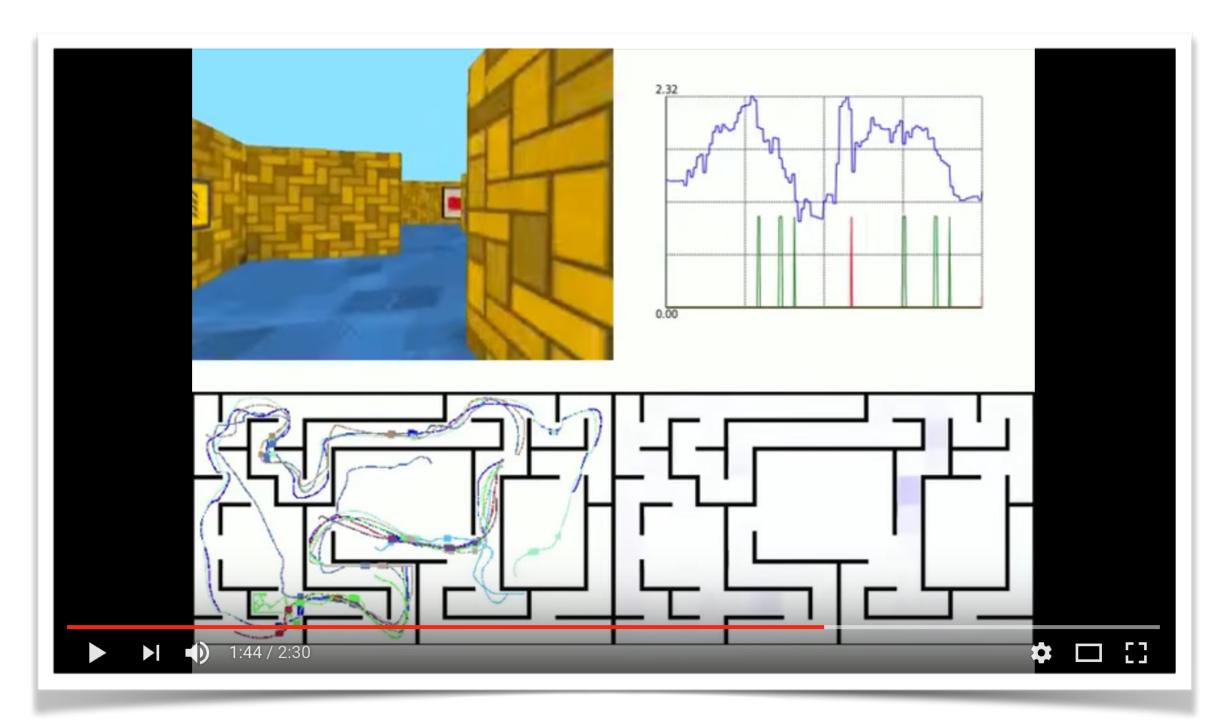


Learning to navigate in complex environments

Small I-maze (goal in random branch): remembers which branch contains goal

Large random maze with random goal





Thank you!

piotr.mirowski@computer.org

These slides will also be posted on: piotrmirowski.wordpress.com

www.deepmind.com/research/publications/

www.deepmind.com/careers/

Take-aways

Lecture notes in Deep Learning (Nando de Freitas, Oxford): "Recurrent nets and LSTM"

https://www.youtube.com/watch?v=56TYLaQN4N8

"Generating sequences with RNNs"

https://www.youtube.com/watch?v=-yX1SYeDHbg

LSTM code for Lua+Torch7:

https://github.com/karpathy/char-rnn/

https://github.com/jcjohnson/torch-rnn

LSTM code for Python+TensorFlow:

https://www.tensorflow.org/versions/r0.8/tutorials/recurrent/index.html